Metamath Proof Explorer


Theorem addscutlem

Description: Lemma for addscut . Show the statement with some additional distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Hypotheses addscutlem.1 φ X No
addscutlem.2 φ Y No
Assertion addscutlem φ X + s Y No p | l L X p = l + s Y q | m L Y q = X + s m s X + s Y X + s Y s w | r R X w = r + s Y t | s R Y t = X + s s

Proof

Step Hyp Ref Expression
1 addscutlem.1 φ X No
2 addscutlem.2 φ Y No
3 addsprop x No y No z No x + s y No y < s z y + s x < s z + s x
4 3 a1d x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday 0 s x + s y No y < s z y + s x < s z + s x
5 4 rgen3 x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday 0 s x + s y No y < s z y + s x < s z + s x
6 5 a1i φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday 0 s x + s y No y < s z y + s x < s z + s x
7 6 1 2 addsproplem3 φ X + s Y No p | l L X p = l + s Y q | m L Y q = X + s m s X + s Y X + s Y s w | r R X w = r + s Y t | s R Y t = X + s s