Metamath Proof Explorer


Theorem addsdilem3

Description: Lemma for addsdi . Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdilem3.1 φ A No
addsdilem3.2 φ B No
addsdilem3.3 φ C No
addsdilem3.4 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) with typecode |-
addsdilem3.5 No typesetting found for |- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) with typecode |-
addsdilem3.6 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) with typecode |-
addsdilem3.7 No typesetting found for |- ( ps -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
addsdilem3.8 No typesetting found for |- ( ps -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) with typecode |-
Assertion addsdilem3 Could not format assertion : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addsdilem3.1 φ A No
2 addsdilem3.2 φ B No
3 addsdilem3.3 φ C No
4 addsdilem3.4 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) with typecode |-
5 addsdilem3.5 Could not format ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) with typecode |-
6 addsdilem3.6 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) with typecode |-
7 addsdilem3.7 Could not format ( ps -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( ps -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
8 addsdilem3.8 Could not format ( ps -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) : No typesetting found for |- ( ps -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) with typecode |-
9 oveq1 Could not format ( xO = X -> ( xO x.s ( B +s C ) ) = ( X x.s ( B +s C ) ) ) : No typesetting found for |- ( xO = X -> ( xO x.s ( B +s C ) ) = ( X x.s ( B +s C ) ) ) with typecode |-
10 oveq1 Could not format ( xO = X -> ( xO x.s B ) = ( X x.s B ) ) : No typesetting found for |- ( xO = X -> ( xO x.s B ) = ( X x.s B ) ) with typecode |-
11 oveq1 Could not format ( xO = X -> ( xO x.s C ) = ( X x.s C ) ) : No typesetting found for |- ( xO = X -> ( xO x.s C ) = ( X x.s C ) ) with typecode |-
12 10 11 oveq12d Could not format ( xO = X -> ( ( xO x.s B ) +s ( xO x.s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) : No typesetting found for |- ( xO = X -> ( ( xO x.s B ) +s ( xO x.s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) with typecode |-
13 9 12 eqeq12d Could not format ( xO = X -> ( ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) <-> ( X x.s ( B +s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) ) : No typesetting found for |- ( xO = X -> ( ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) <-> ( X x.s ( B +s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) ) with typecode |-
14 4 adantr Could not format ( ( ph /\ ps ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) with typecode |-
15 7 adantl Could not format ( ( ph /\ ps ) -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
16 13 14 15 rspcdva Could not format ( ( ph /\ ps ) -> ( X x.s ( B +s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( X x.s ( B +s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) with typecode |-
17 oveq1 Could not format ( yO = Y -> ( yO +s C ) = ( Y +s C ) ) : No typesetting found for |- ( yO = Y -> ( yO +s C ) = ( Y +s C ) ) with typecode |-
18 17 oveq2d Could not format ( yO = Y -> ( A x.s ( yO +s C ) ) = ( A x.s ( Y +s C ) ) ) : No typesetting found for |- ( yO = Y -> ( A x.s ( yO +s C ) ) = ( A x.s ( Y +s C ) ) ) with typecode |-
19 oveq2 Could not format ( yO = Y -> ( A x.s yO ) = ( A x.s Y ) ) : No typesetting found for |- ( yO = Y -> ( A x.s yO ) = ( A x.s Y ) ) with typecode |-
20 19 oveq1d Could not format ( yO = Y -> ( ( A x.s yO ) +s ( A x.s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) : No typesetting found for |- ( yO = Y -> ( ( A x.s yO ) +s ( A x.s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) with typecode |-
21 18 20 eqeq12d Could not format ( yO = Y -> ( ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) <-> ( A x.s ( Y +s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) ) : No typesetting found for |- ( yO = Y -> ( ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) <-> ( A x.s ( Y +s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) ) with typecode |-
22 5 adantr Could not format ( ( ph /\ ps ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) with typecode |-
23 8 adantl Could not format ( ( ph /\ ps ) -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) with typecode |-
24 21 22 23 rspcdva Could not format ( ( ph /\ ps ) -> ( A x.s ( Y +s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( A x.s ( Y +s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) with typecode |-
25 16 24 oveq12d Could not format ( ( ph /\ ps ) -> ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) = ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) = ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) with typecode |-
26 oveq1 Could not format ( xO = X -> ( xO x.s ( yO +s C ) ) = ( X x.s ( yO +s C ) ) ) : No typesetting found for |- ( xO = X -> ( xO x.s ( yO +s C ) ) = ( X x.s ( yO +s C ) ) ) with typecode |-
27 oveq1 Could not format ( xO = X -> ( xO x.s yO ) = ( X x.s yO ) ) : No typesetting found for |- ( xO = X -> ( xO x.s yO ) = ( X x.s yO ) ) with typecode |-
28 27 11 oveq12d Could not format ( xO = X -> ( ( xO x.s yO ) +s ( xO x.s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) ) : No typesetting found for |- ( xO = X -> ( ( xO x.s yO ) +s ( xO x.s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) ) with typecode |-
29 26 28 eqeq12d Could not format ( xO = X -> ( ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) <-> ( X x.s ( yO +s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) ) ) : No typesetting found for |- ( xO = X -> ( ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) <-> ( X x.s ( yO +s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) ) ) with typecode |-
30 17 oveq2d Could not format ( yO = Y -> ( X x.s ( yO +s C ) ) = ( X x.s ( Y +s C ) ) ) : No typesetting found for |- ( yO = Y -> ( X x.s ( yO +s C ) ) = ( X x.s ( Y +s C ) ) ) with typecode |-
31 oveq2 Could not format ( yO = Y -> ( X x.s yO ) = ( X x.s Y ) ) : No typesetting found for |- ( yO = Y -> ( X x.s yO ) = ( X x.s Y ) ) with typecode |-
32 31 oveq1d Could not format ( yO = Y -> ( ( X x.s yO ) +s ( X x.s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) : No typesetting found for |- ( yO = Y -> ( ( X x.s yO ) +s ( X x.s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) with typecode |-
33 30 32 eqeq12d Could not format ( yO = Y -> ( ( X x.s ( yO +s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) <-> ( X x.s ( Y +s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) ) : No typesetting found for |- ( yO = Y -> ( ( X x.s ( yO +s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) <-> ( X x.s ( Y +s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) ) with typecode |-
34 6 adantr Could not format ( ( ph /\ ps ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) with typecode |-
35 29 33 34 15 23 rspc2dv Could not format ( ( ph /\ ps ) -> ( X x.s ( Y +s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( X x.s ( Y +s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) with typecode |-
36 25 35 oveq12d Could not format ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) with typecode |-
37 leftssno Could not format ( _Left ` A ) C_ No : No typesetting found for |- ( _Left ` A ) C_ No with typecode |-
38 rightssno Could not format ( _Right ` A ) C_ No : No typesetting found for |- ( _Right ` A ) C_ No with typecode |-
39 37 38 unssi Could not format ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No : No typesetting found for |- ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No with typecode |-
40 39 7 sselid ψ X No
41 40 adantl φ ψ X No
42 2 adantr φ ψ B No
43 41 42 mulscld Could not format ( ( ph /\ ps ) -> ( X x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( X x.s B ) e. No ) with typecode |-
44 3 adantr φ ψ C No
45 41 44 mulscld Could not format ( ( ph /\ ps ) -> ( X x.s C ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( X x.s C ) e. No ) with typecode |-
46 pncans Could not format ( ( ( X x.s B ) e. No /\ ( X x.s C ) e. No ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) = ( X x.s B ) ) : No typesetting found for |- ( ( ( X x.s B ) e. No /\ ( X x.s C ) e. No ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) = ( X x.s B ) ) with typecode |-
47 43 45 46 syl2anc Could not format ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) = ( X x.s B ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) = ( X x.s B ) ) with typecode |-
48 47 oveq1d Could not format ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) = ( ( X x.s B ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) = ( ( X x.s B ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) with typecode |-
49 43 45 addscld Could not format ( ( ph /\ ps ) -> ( ( X x.s B ) +s ( X x.s C ) ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( X x.s B ) +s ( X x.s C ) ) e. No ) with typecode |-
50 1 adantr φ ψ A No
51 leftssno Could not format ( _Left ` B ) C_ No : No typesetting found for |- ( _Left ` B ) C_ No with typecode |-
52 rightssno Could not format ( _Right ` B ) C_ No : No typesetting found for |- ( _Right ` B ) C_ No with typecode |-
53 51 52 unssi Could not format ( ( _Left ` B ) u. ( _Right ` B ) ) C_ No : No typesetting found for |- ( ( _Left ` B ) u. ( _Right ` B ) ) C_ No with typecode |-
54 53 8 sselid ψ Y No
55 54 adantl φ ψ Y No
56 50 55 mulscld Could not format ( ( ph /\ ps ) -> ( A x.s Y ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( A x.s Y ) e. No ) with typecode |-
57 1 3 mulscld Could not format ( ph -> ( A x.s C ) e. No ) : No typesetting found for |- ( ph -> ( A x.s C ) e. No ) with typecode |-
58 57 adantr Could not format ( ( ph /\ ps ) -> ( A x.s C ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( A x.s C ) e. No ) with typecode |-
59 56 58 addscld Could not format ( ( ph /\ ps ) -> ( ( A x.s Y ) +s ( A x.s C ) ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( A x.s Y ) +s ( A x.s C ) ) e. No ) with typecode |-
60 49 59 45 addsubsd Could not format ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) with typecode |-
61 43 56 58 addsassd Could not format ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) = ( ( X x.s B ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) = ( ( X x.s B ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) with typecode |-
62 48 60 61 3eqtr4d Could not format ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) = ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) = ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) ) with typecode |-
63 62 oveq1d Could not format ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) -s ( X x.s Y ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) -s ( X x.s Y ) ) ) with typecode |-
64 49 59 addscld Could not format ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) e. No ) with typecode |-
65 40 54 mulscld Could not format ( ps -> ( X x.s Y ) e. No ) : No typesetting found for |- ( ps -> ( X x.s Y ) e. No ) with typecode |-
66 65 adantl Could not format ( ( ph /\ ps ) -> ( X x.s Y ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( X x.s Y ) e. No ) with typecode |-
67 64 45 66 subsubs4d Could not format ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s C ) +s ( X x.s Y ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s C ) +s ( X x.s Y ) ) ) ) with typecode |-
68 45 66 addscomd Could not format ( ( ph /\ ps ) -> ( ( X x.s C ) +s ( X x.s Y ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( X x.s C ) +s ( X x.s Y ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) with typecode |-
69 68 oveq2d Could not format ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s C ) +s ( X x.s Y ) ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s C ) +s ( X x.s Y ) ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) with typecode |-
70 67 69 eqtrd Could not format ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) with typecode |-
71 43 56 addscld Could not format ( ( ph /\ ps ) -> ( ( X x.s B ) +s ( A x.s Y ) ) e. No ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( X x.s B ) +s ( A x.s Y ) ) e. No ) with typecode |-
72 71 58 66 addsubsd Could not format ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) with typecode |-
73 63 70 72 3eqtr3d Could not format ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) with typecode |-
74 36 73 eqtrd Could not format ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) with typecode |-