Database
SURREAL NUMBERS
Surreal arithmetic
Addition
addsf
Next ⟩
addsfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
addsf
Description:
Function statement for surreal addition.
(Contributed by
Scott Fenton
, 21-Jan-2025)
Ref
Expression
Assertion
addsf
⊢
+
s
:
No
×
No
⟶
No
Proof
Step
Hyp
Ref
Expression
1
addsfn
⊢
+
s
Fn
No
×
No
2
addscl
⊢
y
∈
No
∧
z
∈
No
→
y
+
s
z
∈
No
3
2
rgen2
⊢
∀
y
∈
No
∀
z
∈
No
y
+
s
z
∈
No
4
fveq2
⊢
x
=
y
z
→
+
s
⁡
x
=
+
s
⁡
y
z
5
df-ov
⊢
y
+
s
z
=
+
s
⁡
y
z
6
4
5
eqtr4di
⊢
x
=
y
z
→
+
s
⁡
x
=
y
+
s
z
7
6
eleq1d
⊢
x
=
y
z
→
+
s
⁡
x
∈
No
↔
y
+
s
z
∈
No
8
7
ralxp
⊢
∀
x
∈
No
×
No
+
s
⁡
x
∈
No
↔
∀
y
∈
No
∀
z
∈
No
y
+
s
z
∈
No
9
3
8
mpbir
⊢
∀
x
∈
No
×
No
+
s
⁡
x
∈
No
10
ffnfv
⊢
+
s
:
No
×
No
⟶
No
↔
+
s
Fn
No
×
No
∧
∀
x
∈
No
×
No
+
s
⁡
x
∈
No
11
1
9
10
mpbir2an
⊢
+
s
:
No
×
No
⟶
No