Metamath Proof Explorer


Theorem addsf

Description: Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addsf + s : No × No No

Proof

Step Hyp Ref Expression
1 addsfn + s Fn No × No
2 addscl y No z No y + s z No
3 2 rgen2 y No z No y + s z No
4 fveq2 x = y z + s x = + s y z
5 df-ov y + s z = + s y z
6 4 5 eqtr4di x = y z + s x = y + s z
7 6 eleq1d x = y z + s x No y + s z No
8 7 ralxp x No × No + s x No y No z No y + s z No
9 3 8 mpbir x No × No + s x No
10 ffnfv + s : No × No No + s Fn No × No x No × No + s x No
11 1 9 10 mpbir2an + s : No × No No