Metamath Proof Explorer


Theorem addsfn

Description: Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion addsfn + s Fn No × No

Proof

Step Hyp Ref Expression
1 df-adds + s = norec2 s #A# x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r
2 1 norec2fn + s Fn No × No