Metamath Proof Explorer


Theorem addsfo

Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addsfo + s : No × No onto No

Proof

Step Hyp Ref Expression
1 addsf + s : No × No No
2 0sno 0 s No
3 opelxpi z No 0 s No z 0 s No × No
4 2 3 mpan2 z No z 0 s No × No
5 addsrid z No z + s 0 s = z
6 5 eqcomd z No z = z + s 0 s
7 fveq2 x = z 0 s + s x = + s z 0 s
8 df-ov z + s 0 s = + s z 0 s
9 7 8 eqtr4di x = z 0 s + s x = z + s 0 s
10 9 rspceeqv z 0 s No × No z = z + s 0 s x No × No z = + s x
11 4 6 10 syl2anc z No x No × No z = + s x
12 11 rgen z No x No × No z = + s x
13 dffo3 + s : No × No onto No + s : No × No No z No x No × No z = + s x
14 1 12 13 mpbir2an + s : No × No onto No