Database
SURREAL NUMBERS
Surreal arithmetic
Addition
addsfo
Next ⟩
peano2no
Metamath Proof Explorer
Ascii
Unicode
Theorem
addsfo
Description:
Surreal addition is onto.
(Contributed by
Scott Fenton
, 21-Jan-2025)
Ref
Expression
Assertion
addsfo
⊢
+
s
:
No
×
No
⟶
onto
No
Proof
Step
Hyp
Ref
Expression
1
addsf
⊢
+
s
:
No
×
No
⟶
No
2
0sno
⊢
0
s
∈
No
3
opelxpi
⊢
z
∈
No
∧
0
s
∈
No
→
z
0
s
∈
No
×
No
4
2
3
mpan2
⊢
z
∈
No
→
z
0
s
∈
No
×
No
5
addsrid
⊢
z
∈
No
→
z
+
s
0
s
=
z
6
5
eqcomd
⊢
z
∈
No
→
z
=
z
+
s
0
s
7
fveq2
⊢
x
=
z
0
s
→
+
s
⁡
x
=
+
s
⁡
z
0
s
8
df-ov
⊢
z
+
s
0
s
=
+
s
⁡
z
0
s
9
7
8
eqtr4di
⊢
x
=
z
0
s
→
+
s
⁡
x
=
z
+
s
0
s
10
9
rspceeqv
⊢
z
0
s
∈
No
×
No
∧
z
=
z
+
s
0
s
→
∃
x
∈
No
×
No
z
=
+
s
⁡
x
11
4
6
10
syl2anc
⊢
z
∈
No
→
∃
x
∈
No
×
No
z
=
+
s
⁡
x
12
11
rgen
⊢
∀
z
∈
No
∃
x
∈
No
×
No
z
=
+
s
⁡
x
13
dffo3
⊢
+
s
:
No
×
No
⟶
onto
No
↔
+
s
:
No
×
No
⟶
No
∧
∀
z
∈
No
∃
x
∈
No
×
No
z
=
+
s
⁡
x
14
1
12
13
mpbir2an
⊢
+
s
:
No
×
No
⟶
onto
No