Metamath Proof Explorer


Theorem addsin

Description: Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion addsin A B sin A + sin B = 2 sin A + B 2 cos A B 2

Proof

Step Hyp Ref Expression
1 addcl A B A + B
2 1 halfcld A B A + B 2
3 2 sincld A B sin A + B 2
4 subcl A B A B
5 4 halfcld A B A B 2
6 5 coscld A B cos A B 2
7 3 6 mulcld A B sin A + B 2 cos A B 2
8 7 2timesd A B 2 sin A + B 2 cos A B 2 = sin A + B 2 cos A B 2 + sin A + B 2 cos A B 2
9 sinadd A + B 2 A B 2 sin A + B 2 + A B 2 = sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2
10 2 5 9 syl2anc A B sin A + B 2 + A B 2 = sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2
11 sinsub A + B 2 A B 2 sin A + B 2 A B 2 = sin A + B 2 cos A B 2 cos A + B 2 sin A B 2
12 2 5 11 syl2anc A B sin A + B 2 A B 2 = sin A + B 2 cos A B 2 cos A + B 2 sin A B 2
13 10 12 oveq12d A B sin A + B 2 + A B 2 + sin A + B 2 A B 2 = sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2 + sin A + B 2 cos A B 2 cos A + B 2 sin A B 2
14 2 coscld A B cos A + B 2
15 5 sincld A B sin A B 2
16 14 15 mulcld A B cos A + B 2 sin A B 2
17 7 16 7 ppncand A B sin A + B 2 cos A B 2 + cos A + B 2 sin A B 2 + sin A + B 2 cos A B 2 cos A + B 2 sin A B 2 = sin A + B 2 cos A B 2 + sin A + B 2 cos A B 2
18 13 17 eqtrd A B sin A + B 2 + A B 2 + sin A + B 2 A B 2 = sin A + B 2 cos A B 2 + sin A + B 2 cos A B 2
19 halfaddsub A B A + B 2 + A B 2 = A A + B 2 A B 2 = B
20 19 simpld A B A + B 2 + A B 2 = A
21 20 fveq2d A B sin A + B 2 + A B 2 = sin A
22 19 simprd A B A + B 2 A B 2 = B
23 22 fveq2d A B sin A + B 2 A B 2 = sin B
24 21 23 oveq12d A B sin A + B 2 + A B 2 + sin A + B 2 A B 2 = sin A + sin B
25 8 18 24 3eqtr2rd A B sin A + sin B = 2 sin A + B 2 cos A B 2