Database
SURREAL NUMBERS
Surreal arithmetic
Addition
addslid
Next ⟩
addsproplem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
addslid
Description:
Surreal addition to zero is identity.
(Contributed by
Scott Fenton
, 3-Feb-2025)
Ref
Expression
Assertion
addslid
⊢
A
∈
No
→
0
s
+
s
A
=
A
Proof
Step
Hyp
Ref
Expression
1
id
⊢
A
∈
No
→
A
∈
No
2
0sno
⊢
0
s
∈
No
3
2
a1i
⊢
A
∈
No
→
0
s
∈
No
4
1
3
addscomd
⊢
A
∈
No
→
A
+
s
0
s
=
0
s
+
s
A
5
addsrid
⊢
A
∈
No
→
A
+
s
0
s
=
A
6
4
5
eqtr3d
⊢
A
∈
No
→
0
s
+
s
A
=
A