Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
|
2 |
|
addsproplem1.2 |
|
3 |
|
addsproplem1.3 |
|
4 |
|
addsproplem1.4 |
|
5 |
|
addsproplem1.5 |
|
6 |
2 3 4
|
3jca |
|
7 |
|
fveq2 |
|
8 |
7
|
oveq1d |
|
9 |
7
|
oveq1d |
|
10 |
8 9
|
uneq12d |
|
11 |
10
|
eleq1d |
|
12 |
|
oveq1 |
|
13 |
12
|
eleq1d |
|
14 |
|
oveq2 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
breq12d |
|
17 |
16
|
imbi2d |
|
18 |
13 17
|
anbi12d |
|
19 |
11 18
|
imbi12d |
|
20 |
|
fveq2 |
|
21 |
20
|
oveq2d |
|
22 |
21
|
uneq1d |
|
23 |
22
|
eleq1d |
|
24 |
|
oveq2 |
|
25 |
24
|
eleq1d |
|
26 |
|
breq1 |
|
27 |
|
oveq1 |
|
28 |
27
|
breq1d |
|
29 |
26 28
|
imbi12d |
|
30 |
25 29
|
anbi12d |
|
31 |
23 30
|
imbi12d |
|
32 |
|
fveq2 |
|
33 |
32
|
oveq2d |
|
34 |
33
|
uneq2d |
|
35 |
34
|
eleq1d |
|
36 |
|
breq2 |
|
37 |
|
oveq1 |
|
38 |
37
|
breq2d |
|
39 |
36 38
|
imbi12d |
|
40 |
39
|
anbi2d |
|
41 |
35 40
|
imbi12d |
|
42 |
19 31 41
|
rspc3v |
|
43 |
6 1 5 42
|
syl3c |
|