Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
|
2 |
|
addsproplem2.2 |
|
3 |
|
addsproplem2.3 |
|
4 |
|
fvex |
|
5 |
4
|
abrexex |
|
6 |
5
|
a1i |
|
7 |
|
fvex |
|
8 |
7
|
abrexex |
|
9 |
8
|
a1i |
|
10 |
6 9
|
unexd |
|
11 |
|
fvex |
|
12 |
11
|
abrexex |
|
13 |
12
|
a1i |
|
14 |
|
fvex |
|
15 |
14
|
abrexex |
|
16 |
15
|
a1i |
|
17 |
13 16
|
unexd |
|
18 |
1
|
adantr |
|
19 |
|
leftssno |
|
20 |
19
|
sseli |
|
21 |
20
|
adantl |
|
22 |
3
|
adantr |
|
23 |
|
0sno |
|
24 |
23
|
a1i |
|
25 |
|
bday0s |
|
26 |
25
|
oveq2i |
|
27 |
|
bdayelon |
|
28 |
|
naddrid |
|
29 |
27 28
|
ax-mp |
|
30 |
26 29
|
eqtri |
|
31 |
30
|
uneq2i |
|
32 |
|
bdayelon |
|
33 |
|
naddword1 |
|
34 |
27 32 33
|
mp2an |
|
35 |
|
ssequn2 |
|
36 |
34 35
|
mpbi |
|
37 |
31 36
|
eqtri |
|
38 |
|
leftssold |
|
39 |
38
|
sseli |
|
40 |
|
bdayelon |
|
41 |
|
oldbday |
|
42 |
40 20 41
|
sylancr |
|
43 |
39 42
|
mpbid |
|
44 |
|
naddel1 |
|
45 |
27 40 32 44
|
mp3an |
|
46 |
43 45
|
sylib |
|
47 |
46
|
adantl |
|
48 |
|
elun1 |
|
49 |
47 48
|
syl |
|
50 |
37 49
|
eqeltrid |
|
51 |
18 21 22 24 50
|
addsproplem1 |
|
52 |
51
|
simpld |
|
53 |
|
eleq1a |
|
54 |
52 53
|
syl |
|
55 |
54
|
rexlimdva |
|
56 |
55
|
abssdv |
|
57 |
1
|
adantr |
|
58 |
2
|
adantr |
|
59 |
|
leftssno |
|
60 |
59
|
sseli |
|
61 |
60
|
adantl |
|
62 |
23
|
a1i |
|
63 |
25
|
oveq2i |
|
64 |
|
naddrid |
|
65 |
40 64
|
ax-mp |
|
66 |
63 65
|
eqtri |
|
67 |
66
|
uneq2i |
|
68 |
|
bdayelon |
|
69 |
|
naddword1 |
|
70 |
40 68 69
|
mp2an |
|
71 |
|
ssequn2 |
|
72 |
70 71
|
mpbi |
|
73 |
67 72
|
eqtri |
|
74 |
|
leftssold |
|
75 |
74
|
sseli |
|
76 |
|
oldbday |
|
77 |
32 60 76
|
sylancr |
|
78 |
75 77
|
mpbid |
|
79 |
|
naddel2 |
|
80 |
68 32 40 79
|
mp3an |
|
81 |
78 80
|
sylib |
|
82 |
81
|
adantl |
|
83 |
|
elun1 |
|
84 |
82 83
|
syl |
|
85 |
73 84
|
eqeltrid |
|
86 |
57 58 61 62 85
|
addsproplem1 |
|
87 |
86
|
simpld |
|
88 |
|
eleq1a |
|
89 |
87 88
|
syl |
|
90 |
89
|
rexlimdva |
|
91 |
90
|
abssdv |
|
92 |
56 91
|
unssd |
|
93 |
1
|
adantr |
|
94 |
|
rightssno |
|
95 |
94
|
sseli |
|
96 |
95
|
adantl |
|
97 |
3
|
adantr |
|
98 |
23
|
a1i |
|
99 |
25
|
oveq2i |
|
100 |
|
bdayelon |
|
101 |
|
naddrid |
|
102 |
100 101
|
ax-mp |
|
103 |
99 102
|
eqtri |
|
104 |
103
|
uneq2i |
|
105 |
|
naddword1 |
|
106 |
100 32 105
|
mp2an |
|
107 |
|
ssequn2 |
|
108 |
106 107
|
mpbi |
|
109 |
104 108
|
eqtri |
|
110 |
|
rightssold |
|
111 |
110
|
sseli |
|
112 |
|
oldbday |
|
113 |
40 95 112
|
sylancr |
|
114 |
111 113
|
mpbid |
|
115 |
|
naddel1 |
|
116 |
100 40 32 115
|
mp3an |
|
117 |
114 116
|
sylib |
|
118 |
117
|
adantl |
|
119 |
|
elun1 |
|
120 |
118 119
|
syl |
|
121 |
109 120
|
eqeltrid |
|
122 |
93 96 97 98 121
|
addsproplem1 |
|
123 |
122
|
simpld |
|
124 |
|
eleq1a |
|
125 |
123 124
|
syl |
|
126 |
125
|
rexlimdva |
|
127 |
126
|
abssdv |
|
128 |
1
|
adantr |
|
129 |
2
|
adantr |
|
130 |
|
rightssno |
|
131 |
130
|
sseli |
|
132 |
131
|
adantl |
|
133 |
23
|
a1i |
|
134 |
66
|
uneq2i |
|
135 |
|
bdayelon |
|
136 |
|
naddword1 |
|
137 |
40 135 136
|
mp2an |
|
138 |
|
ssequn2 |
|
139 |
137 138
|
mpbi |
|
140 |
134 139
|
eqtri |
|
141 |
|
rightssold |
|
142 |
141
|
sseli |
|
143 |
|
oldbday |
|
144 |
32 131 143
|
sylancr |
|
145 |
142 144
|
mpbid |
|
146 |
|
naddel2 |
|
147 |
135 32 40 146
|
mp3an |
|
148 |
145 147
|
sylib |
|
149 |
148
|
adantl |
|
150 |
|
elun1 |
|
151 |
149 150
|
syl |
|
152 |
140 151
|
eqeltrid |
|
153 |
128 129 132 133 152
|
addsproplem1 |
|
154 |
153
|
simpld |
|
155 |
|
eleq1a |
|
156 |
154 155
|
syl |
|
157 |
156
|
rexlimdva |
|
158 |
157
|
abssdv |
|
159 |
127 158
|
unssd |
|
160 |
|
elun |
|
161 |
|
vex |
|
162 |
|
eqeq1 |
|
163 |
162
|
rexbidv |
|
164 |
161 163
|
elab |
|
165 |
|
eqeq1 |
|
166 |
165
|
rexbidv |
|
167 |
161 166
|
elab |
|
168 |
164 167
|
orbi12i |
|
169 |
160 168
|
bitri |
|
170 |
|
elun |
|
171 |
|
vex |
|
172 |
|
eqeq1 |
|
173 |
172
|
rexbidv |
|
174 |
171 173
|
elab |
|
175 |
|
eqeq1 |
|
176 |
175
|
rexbidv |
|
177 |
171 176
|
elab |
|
178 |
174 177
|
orbi12i |
|
179 |
170 178
|
bitri |
|
180 |
169 179
|
anbi12i |
|
181 |
|
anddi |
|
182 |
180 181
|
bitri |
|
183 |
|
reeanv |
|
184 |
|
lltropt |
|
185 |
184
|
a1i |
|
186 |
|
simprl |
|
187 |
|
simprr |
|
188 |
185 186 187
|
ssltsepcd |
|
189 |
1
|
adantr |
|
190 |
3
|
adantr |
|
191 |
20
|
ad2antrl |
|
192 |
95
|
ad2antll |
|
193 |
|
naddcom |
|
194 |
32 27 193
|
mp2an |
|
195 |
46
|
ad2antrl |
|
196 |
194 195
|
eqeltrid |
|
197 |
|
naddcom |
|
198 |
32 100 197
|
mp2an |
|
199 |
117
|
ad2antll |
|
200 |
198 199
|
eqeltrid |
|
201 |
|
naddcl |
|
202 |
32 27 201
|
mp2an |
|
203 |
|
naddcl |
|
204 |
32 100 203
|
mp2an |
|
205 |
|
naddcl |
|
206 |
40 32 205
|
mp2an |
|
207 |
|
onunel |
|
208 |
202 204 206 207
|
mp3an |
|
209 |
196 200 208
|
sylanbrc |
|
210 |
|
elun1 |
|
211 |
209 210
|
syl |
|
212 |
189 190 191 192 211
|
addsproplem1 |
|
213 |
212
|
simprd |
|
214 |
188 213
|
mpd |
|
215 |
|
breq12 |
|
216 |
214 215
|
syl5ibrcom |
|
217 |
216
|
rexlimdvva |
|
218 |
183 217
|
biimtrrid |
|
219 |
|
reeanv |
|
220 |
52
|
adantrr |
|
221 |
1
|
adantr |
|
222 |
20
|
ad2antrl |
|
223 |
131
|
ad2antll |
|
224 |
23
|
a1i |
|
225 |
30
|
uneq2i |
|
226 |
|
naddword1 |
|
227 |
27 135 226
|
mp2an |
|
228 |
|
ssequn2 |
|
229 |
227 228
|
mpbi |
|
230 |
225 229
|
eqtri |
|
231 |
|
naddel1 |
|
232 |
27 40 135 231
|
mp3an |
|
233 |
43 232
|
sylib |
|
234 |
233
|
ad2antrl |
|
235 |
148
|
ad2antll |
|
236 |
|
ontr1 |
|
237 |
206 236
|
ax-mp |
|
238 |
234 235 237
|
syl2anc |
|
239 |
|
elun1 |
|
240 |
238 239
|
syl |
|
241 |
230 240
|
eqeltrid |
|
242 |
221 222 223 224 241
|
addsproplem1 |
|
243 |
242
|
simpld |
|
244 |
154
|
adantrl |
|
245 |
|
rightval |
|
246 |
245
|
reqabi |
|
247 |
246
|
simprbi |
|
248 |
247
|
ad2antll |
|
249 |
3
|
adantr |
|
250 |
46
|
ad2antrl |
|
251 |
|
naddcl |
|
252 |
27 32 251
|
mp2an |
|
253 |
|
naddcl |
|
254 |
27 135 253
|
mp2an |
|
255 |
|
onunel |
|
256 |
252 254 206 255
|
mp3an |
|
257 |
250 238 256
|
sylanbrc |
|
258 |
|
elun1 |
|
259 |
257 258
|
syl |
|
260 |
221 222 249 223 259
|
addsproplem1 |
|
261 |
260
|
simprd |
|
262 |
248 261
|
mpd |
|
263 |
222 249
|
addscomd |
|
264 |
222 223
|
addscomd |
|
265 |
262 263 264
|
3brtr4d |
|
266 |
|
leftval |
|
267 |
266
|
reqabi |
|
268 |
267
|
simprbi |
|
269 |
268
|
ad2antrl |
|
270 |
2
|
adantr |
|
271 |
|
naddcom |
|
272 |
135 27 271
|
mp2an |
|
273 |
272 238
|
eqeltrid |
|
274 |
|
naddcom |
|
275 |
135 40 274
|
mp2an |
|
276 |
275 235
|
eqeltrid |
|
277 |
|
naddcl |
|
278 |
135 27 277
|
mp2an |
|
279 |
|
naddcl |
|
280 |
135 40 279
|
mp2an |
|
281 |
|
onunel |
|
282 |
278 280 206 281
|
mp3an |
|
283 |
273 276 282
|
sylanbrc |
|
284 |
|
elun1 |
|
285 |
283 284
|
syl |
|
286 |
221 223 222 270 285
|
addsproplem1 |
|
287 |
286
|
simprd |
|
288 |
269 287
|
mpd |
|
289 |
220 243 244 265 288
|
slttrd |
|
290 |
|
breq12 |
|
291 |
289 290
|
syl5ibrcom |
|
292 |
291
|
rexlimdvva |
|
293 |
219 292
|
biimtrrid |
|
294 |
218 293
|
jaod |
|
295 |
|
reeanv |
|
296 |
1
|
adantr |
|
297 |
2
|
adantr |
|
298 |
60
|
ad2antrl |
|
299 |
23
|
a1i |
|
300 |
81
|
ad2antrl |
|
301 |
300 83
|
syl |
|
302 |
73 301
|
eqeltrid |
|
303 |
296 297 298 299 302
|
addsproplem1 |
|
304 |
303
|
simpld |
|
305 |
95
|
ad2antll |
|
306 |
103
|
uneq2i |
|
307 |
|
naddword1 |
|
308 |
100 68 307
|
mp2an |
|
309 |
|
ssequn2 |
|
310 |
308 309
|
mpbi |
|
311 |
306 310
|
eqtri |
|
312 |
|
naddel1 |
|
313 |
100 40 68 312
|
mp3an |
|
314 |
114 313
|
sylib |
|
315 |
314
|
ad2antll |
|
316 |
|
ontr1 |
|
317 |
206 316
|
ax-mp |
|
318 |
315 300 317
|
syl2anc |
|
319 |
|
elun1 |
|
320 |
318 319
|
syl |
|
321 |
311 320
|
eqeltrid |
|
322 |
296 305 298 299 321
|
addsproplem1 |
|
323 |
322
|
simpld |
|
324 |
3
|
adantr |
|
325 |
117
|
ad2antll |
|
326 |
325 119
|
syl |
|
327 |
109 326
|
eqeltrid |
|
328 |
296 305 324 299 327
|
addsproplem1 |
|
329 |
328
|
simpld |
|
330 |
|
rightval |
|
331 |
330
|
eleq2i |
|
332 |
331
|
biimpi |
|
333 |
332
|
ad2antll |
|
334 |
|
rabid |
|
335 |
333 334
|
sylib |
|
336 |
335
|
simprd |
|
337 |
|
naddcom |
|
338 |
68 40 337
|
mp2an |
|
339 |
338 300
|
eqeltrid |
|
340 |
|
naddcom |
|
341 |
68 100 340
|
mp2an |
|
342 |
341 318
|
eqeltrid |
|
343 |
|
naddcl |
|
344 |
68 40 343
|
mp2an |
|
345 |
|
naddcl |
|
346 |
68 100 345
|
mp2an |
|
347 |
|
onunel |
|
348 |
344 346 206 347
|
mp3an |
|
349 |
339 342 348
|
sylanbrc |
|
350 |
|
elun1 |
|
351 |
349 350
|
syl |
|
352 |
296 298 297 305 351
|
addsproplem1 |
|
353 |
352
|
simprd |
|
354 |
336 353
|
mpd |
|
355 |
|
leftval |
|
356 |
355
|
eleq2i |
|
357 |
356
|
biimpi |
|
358 |
357
|
ad2antrl |
|
359 |
|
rabid |
|
360 |
358 359
|
sylib |
|
361 |
360
|
simprd |
|
362 |
|
naddcl |
|
363 |
100 68 362
|
mp2an |
|
364 |
|
naddcl |
|
365 |
100 32 364
|
mp2an |
|
366 |
|
onunel |
|
367 |
363 365 206 366
|
mp3an |
|
368 |
318 325 367
|
sylanbrc |
|
369 |
|
elun1 |
|
370 |
368 369
|
syl |
|
371 |
296 305 298 324 370
|
addsproplem1 |
|
372 |
371
|
simprd |
|
373 |
361 372
|
mpd |
|
374 |
305 298
|
addscomd |
|
375 |
305 324
|
addscomd |
|
376 |
373 374 375
|
3brtr4d |
|
377 |
304 323 329 354 376
|
slttrd |
|
378 |
|
breq12 |
|
379 |
377 378
|
syl5ibrcom |
|
380 |
379
|
rexlimdvva |
|
381 |
295 380
|
biimtrrid |
|
382 |
|
reeanv |
|
383 |
|
lltropt |
|
384 |
383
|
a1i |
|
385 |
|
simprl |
|
386 |
|
simprr |
|
387 |
384 385 386
|
ssltsepcd |
|
388 |
1
|
adantr |
|
389 |
2
|
adantr |
|
390 |
60
|
ad2antrl |
|
391 |
131
|
ad2antll |
|
392 |
81
|
ad2antrl |
|
393 |
148
|
ad2antll |
|
394 |
|
naddcl |
|
395 |
40 68 394
|
mp2an |
|
396 |
|
naddcl |
|
397 |
40 135 396
|
mp2an |
|
398 |
|
onunel |
|
399 |
395 397 206 398
|
mp3an |
|
400 |
392 393 399
|
sylanbrc |
|
401 |
|
elun1 |
|
402 |
400 401
|
syl |
|
403 |
388 389 390 391 402
|
addsproplem1 |
|
404 |
403
|
simprd |
|
405 |
387 404
|
mpd |
|
406 |
389 390
|
addscomd |
|
407 |
389 391
|
addscomd |
|
408 |
405 406 407
|
3brtr4d |
|
409 |
|
breq12 |
|
410 |
408 409
|
syl5ibrcom |
|
411 |
410
|
rexlimdvva |
|
412 |
382 411
|
biimtrrid |
|
413 |
381 412
|
jaod |
|
414 |
294 413
|
jaod |
|
415 |
182 414
|
biimtrid |
|
416 |
415
|
3impib |
|
417 |
10 17 92 159 416
|
ssltd |
|