Metamath Proof Explorer


Theorem addsproplem4

Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when Y is older than Z . (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
addspropord.2 φ X No
addspropord.3 φ Y No
addspropord.4 φ Z No
addspropord.5 φ Y < s Z
addsproplem4.6 φ bday Y bday Z
Assertion addsproplem4 φ Y + s X < s Z + s X

Proof

Step Hyp Ref Expression
1 addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
2 addspropord.2 φ X No
3 addspropord.3 φ Y No
4 addspropord.4 φ Z No
5 addspropord.5 φ Y < s Z
6 addsproplem4.6 φ bday Y bday Z
7 uncom bday X + bday Y bday X + bday Z = bday X + bday Z bday X + bday Y
8 7 eleq2i bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y
9 8 imbi1i bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
10 9 ralbii z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
11 10 2ralbii x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
12 1 11 sylib φ x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
13 12 2 4 addsproplem3 φ X + s Z No a | c L X a = c + s Z b | d L Z b = X + s d s X + s Z X + s Z s e | g R X e = g + s Z f | h R Z f = X + s h
14 13 simp2d φ a | c L X a = c + s Z b | d L Z b = X + s d s X + s Z
15 bdayelon bday Z On
16 oldbday bday Z On Y No Y Old bday Z bday Y bday Z
17 15 3 16 sylancr φ Y Old bday Z bday Y bday Z
18 6 17 mpbird φ Y Old bday Z
19 breq1 y = Y y < s Z Y < s Z
20 leftval L Z = y Old bday Z | y < s Z
21 19 20 elrab2 Y L Z Y Old bday Z Y < s Z
22 18 5 21 sylanbrc φ Y L Z
23 eqid X + s Y = X + s Y
24 oveq2 d = Y X + s d = X + s Y
25 24 rspceeqv Y L Z X + s Y = X + s Y d L Z X + s Y = X + s d
26 22 23 25 sylancl φ d L Z X + s Y = X + s d
27 ovex X + s Y V
28 eqeq1 b = X + s Y b = X + s d X + s Y = X + s d
29 28 rexbidv b = X + s Y d L Z b = X + s d d L Z X + s Y = X + s d
30 27 29 elab X + s Y b | d L Z b = X + s d d L Z X + s Y = X + s d
31 26 30 sylibr φ X + s Y b | d L Z b = X + s d
32 elun2 X + s Y b | d L Z b = X + s d X + s Y a | c L X a = c + s Z b | d L Z b = X + s d
33 31 32 syl φ X + s Y a | c L X a = c + s Z b | d L Z b = X + s d
34 ovex X + s Z V
35 34 snid X + s Z X + s Z
36 35 a1i φ X + s Z X + s Z
37 14 33 36 ssltsepcd φ X + s Y < s X + s Z
38 3 2 addscomd φ Y + s X = X + s Y
39 4 2 addscomd φ Z + s X = X + s Z
40 37 38 39 3brtr4d φ Y + s X < s Z + s X