Metamath Proof Explorer


Theorem addsproplem6

Description: Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when Y and Z are the same age. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
addspropord.2 φ X No
addspropord.3 φ Y No
addspropord.4 φ Z No
addspropord.5 φ Y < s Z
addsproplem6.6 φ bday Y = bday Z
Assertion addsproplem6 φ Y + s X < s Z + s X

Proof

Step Hyp Ref Expression
1 addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
2 addspropord.2 φ X No
3 addspropord.3 φ Y No
4 addspropord.4 φ Z No
5 addspropord.5 φ Y < s Z
6 addsproplem6.6 φ bday Y = bday Z
7 nodense Y No Z No bday Y = bday Z Y < s Z m No bday m bday Y Y < s m m < s Z
8 3 4 6 5 7 syl22anc φ m No bday m bday Y Y < s m m < s Z
9 1 2 3 addsproplem3 φ X + s Y No a | b L X a = b + s Y c | d L Y c = X + s d s X + s Y X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
10 9 simp1d φ X + s Y No
11 10 adantr φ m No bday m bday Y Y < s m m < s Z X + s Y No
12 1 adantr φ m No bday m bday Y Y < s m m < s Z x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
13 2 adantr φ m No bday m bday Y Y < s m m < s Z X No
14 simprl φ m No bday m bday Y Y < s m m < s Z m No
15 unidm bday X + bday m bday X + bday m = bday X + bday m
16 simprr1 φ m No bday m bday Y Y < s m m < s Z bday m bday Y
17 bdayelon bday m On
18 bdayelon bday Y On
19 bdayelon bday X On
20 naddel2 bday m On bday Y On bday X On bday m bday Y bday X + bday m bday X + bday Y
21 17 18 19 20 mp3an bday m bday Y bday X + bday m bday X + bday Y
22 16 21 sylib φ m No bday m bday Y Y < s m m < s Z bday X + bday m bday X + bday Y
23 elun1 bday X + bday m bday X + bday Y bday X + bday m bday X + bday Y bday X + bday Z
24 22 23 syl φ m No bday m bday Y Y < s m m < s Z bday X + bday m bday X + bday Y bday X + bday Z
25 15 24 eqeltrid φ m No bday m bday Y Y < s m m < s Z bday X + bday m bday X + bday m bday X + bday Y bday X + bday Z
26 12 13 14 14 25 addsproplem1 φ m No bday m bday Y Y < s m m < s Z X + s m No m < s m m + s X < s m + s X
27 26 simpld φ m No bday m bday Y Y < s m m < s Z X + s m No
28 uncom bday X + bday Y bday X + bday Z = bday X + bday Z bday X + bday Y
29 28 eleq2i bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y
30 29 imbi1i bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
31 30 ralbii z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
32 31 2ralbii x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
33 1 32 sylib φ x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
34 33 2 4 addsproplem3 φ X + s Z No a | b L X a = b + s Z c | d L Z c = X + s d s X + s Z X + s Z s e | f R X e = f + s Z g | h R Z g = X + s h
35 34 simp1d φ X + s Z No
36 35 adantr φ m No bday m bday Y Y < s m m < s Z X + s Z No
37 9 simp3d φ X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
38 37 adantr φ m No bday m bday Y Y < s m m < s Z X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
39 ovex X + s Y V
40 39 snid X + s Y X + s Y
41 40 a1i φ m No bday m bday Y Y < s m m < s Z X + s Y X + s Y
42 oldbday bday Y On m No m Old bday Y bday m bday Y
43 18 14 42 sylancr φ m No bday m bday Y Y < s m m < s Z m Old bday Y bday m bday Y
44 16 43 mpbird φ m No bday m bday Y Y < s m m < s Z m Old bday Y
45 simprr2 φ m No bday m bday Y Y < s m m < s Z Y < s m
46 breq2 a = m Y < s a Y < s m
47 rightval R Y = a Old bday Y | Y < s a
48 46 47 elrab2 m R Y m Old bday Y Y < s m
49 44 45 48 sylanbrc φ m No bday m bday Y Y < s m m < s Z m R Y
50 eqid X + s m = X + s m
51 oveq2 h = m X + s h = X + s m
52 51 rspceeqv m R Y X + s m = X + s m h R Y X + s m = X + s h
53 49 50 52 sylancl φ m No bday m bday Y Y < s m m < s Z h R Y X + s m = X + s h
54 ovex X + s m V
55 eqeq1 g = X + s m g = X + s h X + s m = X + s h
56 55 rexbidv g = X + s m h R Y g = X + s h h R Y X + s m = X + s h
57 54 56 elab X + s m g | h R Y g = X + s h h R Y X + s m = X + s h
58 53 57 sylibr φ m No bday m bday Y Y < s m m < s Z X + s m g | h R Y g = X + s h
59 elun2 X + s m g | h R Y g = X + s h X + s m e | f R X e = f + s Y g | h R Y g = X + s h
60 58 59 syl φ m No bday m bday Y Y < s m m < s Z X + s m e | f R X e = f + s Y g | h R Y g = X + s h
61 38 41 60 ssltsepcd φ m No bday m bday Y Y < s m m < s Z X + s Y < s X + s m
62 33 adantr φ m No bday m bday Y Y < s m m < s Z x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
63 4 adantr φ m No bday m bday Y Y < s m m < s Z Z No
64 62 13 63 addsproplem3 φ m No bday m bday Y Y < s m m < s Z X + s Z No a | b L X a = b + s Z c | d L Z c = X + s d s X + s Z X + s Z s e | f R X e = f + s Z g | h R Z g = X + s h
65 64 simp2d φ m No bday m bday Y Y < s m m < s Z a | b L X a = b + s Z c | d L Z c = X + s d s X + s Z
66 6 adantr φ m No bday m bday Y Y < s m m < s Z bday Y = bday Z
67 16 66 eleqtrd φ m No bday m bday Y Y < s m m < s Z bday m bday Z
68 bdayelon bday Z On
69 oldbday bday Z On m No m Old bday Z bday m bday Z
70 68 14 69 sylancr φ m No bday m bday Y Y < s m m < s Z m Old bday Z bday m bday Z
71 67 70 mpbird φ m No bday m bday Y Y < s m m < s Z m Old bday Z
72 simprr3 φ m No bday m bday Y Y < s m m < s Z m < s Z
73 breq1 a = m a < s Z m < s Z
74 leftval L Z = a Old bday Z | a < s Z
75 73 74 elrab2 m L Z m Old bday Z m < s Z
76 71 72 75 sylanbrc φ m No bday m bday Y Y < s m m < s Z m L Z
77 oveq2 d = m X + s d = X + s m
78 77 rspceeqv m L Z X + s m = X + s m d L Z X + s m = X + s d
79 76 50 78 sylancl φ m No bday m bday Y Y < s m m < s Z d L Z X + s m = X + s d
80 eqeq1 c = X + s m c = X + s d X + s m = X + s d
81 80 rexbidv c = X + s m d L Z c = X + s d d L Z X + s m = X + s d
82 54 81 elab X + s m c | d L Z c = X + s d d L Z X + s m = X + s d
83 79 82 sylibr φ m No bday m bday Y Y < s m m < s Z X + s m c | d L Z c = X + s d
84 elun2 X + s m c | d L Z c = X + s d X + s m a | b L X a = b + s Z c | d L Z c = X + s d
85 83 84 syl φ m No bday m bday Y Y < s m m < s Z X + s m a | b L X a = b + s Z c | d L Z c = X + s d
86 ovex X + s Z V
87 86 snid X + s Z X + s Z
88 87 a1i φ m No bday m bday Y Y < s m m < s Z X + s Z X + s Z
89 65 85 88 ssltsepcd φ m No bday m bday Y Y < s m m < s Z X + s m < s X + s Z
90 11 27 36 61 89 slttrd φ m No bday m bday Y Y < s m m < s Z X + s Y < s X + s Z
91 8 90 rexlimddv φ X + s Y < s X + s Z
92 3 2 addscomd φ Y + s X = X + s Y
93 4 2 addscomd φ Z + s X = X + s Z
94 91 92 93 3brtr4d φ Y + s X < s Z + s X