Metamath Proof Explorer


Theorem addsproplem7

Description: Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
addspropord.2 φ X No
addspropord.3 φ Y No
addspropord.4 φ Z No
addspropord.5 φ Y < s Z
Assertion addsproplem7 Could not format assertion : No typesetting found for |- ( ph -> ( Y +s X )

Proof

Step Hyp Ref Expression
1 addsproplem.1 Could not format ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
2 addspropord.2 φ X No
3 addspropord.3 φ Y No
4 addspropord.4 φ Z No
5 addspropord.5 φ Y < s Z
6 bdayelon bday Y On
7 fvex bday Y V
8 7 elon bday Y On Ord bday Y
9 6 8 mpbi Ord bday Y
10 bdayelon bday Z On
11 fvex bday Z V
12 11 elon bday Z On Ord bday Z
13 10 12 mpbi Ord bday Z
14 ordtri3or Ord bday Y Ord bday Z bday Y bday Z bday Y = bday Z bday Z bday Y
15 9 13 14 mp2an bday Y bday Z bday Y = bday Z bday Z bday Y
16 simpl φ bday Y bday Z φ
17 16 1 syl Could not format ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
18 16 2 syl φ bday Y bday Z X No
19 16 3 syl φ bday Y bday Z Y No
20 16 4 syl φ bday Y bday Z Z No
21 16 5 syl φ bday Y bday Z Y < s Z
22 simpr φ bday Y bday Z bday Y bday Z
23 17 18 19 20 21 22 addsproplem4 Could not format ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ( Y +s X ) ( Y +s X )
24 23 ex Could not format ( ph -> ( ( bday ` Y ) e. ( bday ` Z ) -> ( Y +s X ) ( ( bday ` Y ) e. ( bday ` Z ) -> ( Y +s X )
25 simpl φ bday Y = bday Z φ
26 25 1 syl Could not format ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
27 25 2 syl φ bday Y = bday Z X No
28 25 3 syl φ bday Y = bday Z Y No
29 25 4 syl φ bday Y = bday Z Z No
30 25 5 syl φ bday Y = bday Z Y < s Z
31 simpr φ bday Y = bday Z bday Y = bday Z
32 26 27 28 29 30 31 addsproplem6 Could not format ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ( Y +s X ) ( Y +s X )
33 32 ex Could not format ( ph -> ( ( bday ` Y ) = ( bday ` Z ) -> ( Y +s X ) ( ( bday ` Y ) = ( bday ` Z ) -> ( Y +s X )
34 1 adantr Could not format ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
35 2 adantr φ bday Z bday Y X No
36 3 adantr φ bday Z bday Y Y No
37 4 adantr φ bday Z bday Y Z No
38 5 adantr φ bday Z bday Y Y < s Z
39 simpr φ bday Z bday Y bday Z bday Y
40 34 35 36 37 38 39 addsproplem5 Could not format ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X ) ( Y +s X )
41 40 ex Could not format ( ph -> ( ( bday ` Z ) e. ( bday ` Y ) -> ( Y +s X ) ( ( bday ` Z ) e. ( bday ` Y ) -> ( Y +s X )
42 24 33 41 3jaod Could not format ( ph -> ( ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X ) ( ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X )
43 15 42 mpi Could not format ( ph -> ( Y +s X ) ( Y +s X )