Metamath Proof Explorer


Theorem addsq2nreurex

Description: For each complex number C , there is no unique complex number a added to the square of another complex number b resulting in the given complex number C . (Contributed by AV, 2-Jul-2023)

Ref Expression
Assertion addsq2nreurex C ¬ ∃! a b a + b 2 = C

Proof

Step Hyp Ref Expression
1 peano2cnm C C 1
2 id C C
3 4cn 4
4 3 a1i C 4
5 2 4 subcld C C 4
6 1cnd C 1
7 1re 1
8 1lt4 1 < 4
9 7 8 ltneii 1 4
10 9 a1i C 1 4
11 2 6 4 10 subneintrd C C 1 C 4
12 oveq1 b = 1 b 2 = 1 2
13 12 oveq2d b = 1 C - 1 + b 2 = C - 1 + 1 2
14 13 eqeq1d b = 1 C - 1 + b 2 = C C - 1 + 1 2 = C
15 14 adantl C b = 1 C - 1 + b 2 = C C - 1 + 1 2 = C
16 sq1 1 2 = 1
17 16 oveq2i C - 1 + 1 2 = C - 1 + 1
18 npcan1 C C - 1 + 1 = C
19 17 18 syl5eq C C - 1 + 1 2 = C
20 6 15 19 rspcedvd C b C - 1 + b 2 = C
21 2cnd C 2
22 oveq1 b = 2 b 2 = 2 2
23 22 oveq2d b = 2 C - 4 + b 2 = C - 4 + 2 2
24 23 eqeq1d b = 2 C - 4 + b 2 = C C - 4 + 2 2 = C
25 24 adantl C b = 2 C - 4 + b 2 = C C - 4 + 2 2 = C
26 2cn 2
27 26 sqcli 2 2
28 27 a1i C 2 2
29 2 4 28 subadd23d C C - 4 + 2 2 = C + 2 2 - 4
30 sq2 2 2 = 4
31 30 a1i C 2 2 = 4
32 28 31 subeq0bd C 2 2 4 = 0
33 27 3 subcli 2 2 4
34 addid0 C 2 2 4 C + 2 2 - 4 = C 2 2 4 = 0
35 33 34 mpan2 C C + 2 2 - 4 = C 2 2 4 = 0
36 32 35 mpbird C C + 2 2 - 4 = C
37 29 36 eqtrd C C - 4 + 2 2 = C
38 21 25 37 rspcedvd C b C - 4 + b 2 = C
39 oveq1 a = C 1 a + b 2 = C - 1 + b 2
40 39 eqeq1d a = C 1 a + b 2 = C C - 1 + b 2 = C
41 40 rexbidv a = C 1 b a + b 2 = C b C - 1 + b 2 = C
42 oveq1 a = C 4 a + b 2 = C - 4 + b 2
43 42 eqeq1d a = C 4 a + b 2 = C C - 4 + b 2 = C
44 43 rexbidv a = C 4 b a + b 2 = C b C - 4 + b 2 = C
45 41 44 2nreu C 1 C 4 C 1 C 4 b C - 1 + b 2 = C b C - 4 + b 2 = C ¬ ∃! a b a + b 2 = C
46 45 imp C 1 C 4 C 1 C 4 b C - 1 + b 2 = C b C - 4 + b 2 = C ¬ ∃! a b a + b 2 = C
47 1 5 11 20 38 46 syl32anc C ¬ ∃! a b a + b 2 = C