Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|
2 |
|
oveq1 |
|
3 |
2
|
eqeq1d |
|
4 |
3
|
reubidv |
|
5 |
|
eqeq1 |
|
6 |
5
|
imbi2d |
|
7 |
6
|
ralbidv |
|
8 |
4 7
|
anbi12d |
|
9 |
8
|
adantl |
|
10 |
|
0cnd |
|
11 |
|
reueq |
|
12 |
10 11
|
sylib |
|
13 |
|
subid |
|
14 |
13
|
adantr |
|
15 |
14
|
eqeq1d |
|
16 |
|
simpl |
|
17 |
|
simpr |
|
18 |
17
|
sqcld |
|
19 |
16 16 18
|
subaddd |
|
20 |
|
eqcom |
|
21 |
|
sqeq0 |
|
22 |
20 21
|
syl5bb |
|
23 |
22
|
adantl |
|
24 |
15 19 23
|
3bitr3d |
|
25 |
24
|
reubidva |
|
26 |
12 25
|
mpbird |
|
27 |
|
simpr |
|
28 |
27
|
adantr |
|
29 |
|
sqcl |
|
30 |
29
|
adantl |
|
31 |
|
simpl |
|
32 |
31
|
adantr |
|
33 |
28 30 32
|
addrsub |
|
34 |
33
|
reubidva |
|
35 |
|
subcl |
|
36 |
|
reusq0 |
|
37 |
35 36
|
syl |
|
38 |
|
subeq0 |
|
39 |
38
|
biimpd |
|
40 |
37 39
|
sylbid |
|
41 |
34 40
|
sylbid |
|
42 |
41
|
ralrimiva |
|
43 |
26 42
|
jca |
|
44 |
1 9 43
|
rspcedvd |
|
45 |
|
oveq1 |
|
46 |
45
|
eqeq1d |
|
47 |
46
|
reubidv |
|
48 |
47
|
reu8 |
|
49 |
44 48
|
sylibr |
|