Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.
Remark: This theorem, together with addsq2reu , shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu ). For more details see comment for addsqnreup . (Contributed by AV, 20-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | addsqrexnreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cnm | ||
2 | oveq1 | ||
3 | 2 | eqeq1d | |
4 | 3 | reubidv | |
5 | 4 | notbid | |
6 | 5 | adantl | |
7 | ax-1cn | ||
8 | neg1cn | ||
9 | 1nn | ||
10 | nnneneg | ||
11 | 9 10 | ax-mp | |
12 | 7 8 11 | 3pm3.2i | |
13 | sq1 | ||
14 | 13 | eqcomi | |
15 | neg1sqe1 | ||
16 | 15 | eqcomi | |
17 | 14 16 | pm3.2i | |
18 | oveq1 | ||
19 | 18 | eqeq2d | |
20 | oveq1 | ||
21 | 20 | eqeq2d | |
22 | 19 21 | 2nreu | |
23 | 12 17 22 | mp2 | |
24 | simpl | ||
25 | 1 | adantr | |
26 | sqcl | ||
27 | 26 | adantl | |
28 | 24 25 27 | subaddd | |
29 | id | ||
30 | 1cnd | ||
31 | 29 30 | nncand | |
32 | 31 | adantr | |
33 | 32 | eqeq1d | |
34 | 28 33 | bitr3d | |
35 | 34 | reubidva | |
36 | 23 35 | mtbiri | |
37 | 1 6 36 | rspcedvd |