Metamath Proof Explorer


Theorem addsrid

Description: Surreal addition to zero is identity. Part of Theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion addsrid A No A + s 0 s = A

Proof

Step Hyp Ref Expression
1 oveq1 a = b a + s 0 s = b + s 0 s
2 id a = b a = b
3 1 2 eqeq12d a = b a + s 0 s = a b + s 0 s = b
4 oveq1 a = A a + s 0 s = A + s 0 s
5 id a = A a = A
6 4 5 eqeq12d a = A a + s 0 s = a A + s 0 s = A
7 0sno 0 s No
8 addsval a No 0 s No a + s 0 s = x | y L a x = y + s 0 s z | y L 0 s z = a + s y | s x | w R a x = w + s 0 s z | w R 0 s z = a + s w
9 7 8 mpan2 a No a + s 0 s = x | y L a x = y + s 0 s z | y L 0 s z = a + s y | s x | w R a x = w + s 0 s z | w R 0 s z = a + s w
10 9 adantr a No b L a R a b + s 0 s = b a + s 0 s = x | y L a x = y + s 0 s z | y L 0 s z = a + s y | s x | w R a x = w + s 0 s z | w R 0 s z = a + s w
11 elun1 y L a y L a R a
12 simpr a No b L a R a b + s 0 s = b b L a R a b + s 0 s = b
13 oveq1 b = y b + s 0 s = y + s 0 s
14 id b = y b = y
15 13 14 eqeq12d b = y b + s 0 s = b y + s 0 s = y
16 15 rspcva y L a R a b L a R a b + s 0 s = b y + s 0 s = y
17 11 12 16 syl2anr a No b L a R a b + s 0 s = b y L a y + s 0 s = y
18 17 eqeq2d a No b L a R a b + s 0 s = b y L a x = y + s 0 s x = y
19 equcom x = y y = x
20 18 19 bitrdi a No b L a R a b + s 0 s = b y L a x = y + s 0 s y = x
21 20 rexbidva a No b L a R a b + s 0 s = b y L a x = y + s 0 s y L a y = x
22 risset x L a y L a y = x
23 21 22 bitr4di a No b L a R a b + s 0 s = b y L a x = y + s 0 s x L a
24 23 eqabcdv a No b L a R a b + s 0 s = b x | y L a x = y + s 0 s = L a
25 rex0 ¬ y z = a + s y
26 left0s L 0 s =
27 26 rexeqi y L 0 s z = a + s y y z = a + s y
28 25 27 mtbir ¬ y L 0 s z = a + s y
29 28 abf z | y L 0 s z = a + s y =
30 29 a1i a No b L a R a b + s 0 s = b z | y L 0 s z = a + s y =
31 24 30 uneq12d a No b L a R a b + s 0 s = b x | y L a x = y + s 0 s z | y L 0 s z = a + s y = L a
32 un0 L a = L a
33 31 32 eqtrdi a No b L a R a b + s 0 s = b x | y L a x = y + s 0 s z | y L 0 s z = a + s y = L a
34 elun2 w R a w L a R a
35 oveq1 b = w b + s 0 s = w + s 0 s
36 id b = w b = w
37 35 36 eqeq12d b = w b + s 0 s = b w + s 0 s = w
38 37 rspcva w L a R a b L a R a b + s 0 s = b w + s 0 s = w
39 34 12 38 syl2anr a No b L a R a b + s 0 s = b w R a w + s 0 s = w
40 39 eqeq2d a No b L a R a b + s 0 s = b w R a x = w + s 0 s x = w
41 equcom x = w w = x
42 40 41 bitrdi a No b L a R a b + s 0 s = b w R a x = w + s 0 s w = x
43 42 rexbidva a No b L a R a b + s 0 s = b w R a x = w + s 0 s w R a w = x
44 risset x R a w R a w = x
45 43 44 bitr4di a No b L a R a b + s 0 s = b w R a x = w + s 0 s x R a
46 45 eqabcdv a No b L a R a b + s 0 s = b x | w R a x = w + s 0 s = R a
47 rex0 ¬ w z = a + s w
48 right0s R 0 s =
49 48 rexeqi w R 0 s z = a + s w w z = a + s w
50 47 49 mtbir ¬ w R 0 s z = a + s w
51 50 abf z | w R 0 s z = a + s w =
52 51 a1i a No b L a R a b + s 0 s = b z | w R 0 s z = a + s w =
53 46 52 uneq12d a No b L a R a b + s 0 s = b x | w R a x = w + s 0 s z | w R 0 s z = a + s w = R a
54 un0 R a = R a
55 53 54 eqtrdi a No b L a R a b + s 0 s = b x | w R a x = w + s 0 s z | w R 0 s z = a + s w = R a
56 33 55 oveq12d a No b L a R a b + s 0 s = b x | y L a x = y + s 0 s z | y L 0 s z = a + s y | s x | w R a x = w + s 0 s z | w R 0 s z = a + s w = L a | s R a
57 lrcut a No L a | s R a = a
58 57 adantr a No b L a R a b + s 0 s = b L a | s R a = a
59 10 56 58 3eqtrd a No b L a R a b + s 0 s = b a + s 0 s = a
60 59 ex a No b L a R a b + s 0 s = b a + s 0 s = a
61 3 6 60 noinds A No A + s 0 s = A