Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
id |
|
3 |
1 2
|
eqeq12d |
|
4 |
|
oveq1 |
|
5 |
|
id |
|
6 |
4 5
|
eqeq12d |
|
7 |
|
0sno |
|
8 |
|
addsval |
|
9 |
7 8
|
mpan2 |
|
10 |
9
|
adantr |
|
11 |
|
elun1 |
|
12 |
|
simpr |
|
13 |
|
oveq1 |
|
14 |
|
id |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
rspcva |
|
17 |
11 12 16
|
syl2anr |
|
18 |
17
|
eqeq2d |
|
19 |
|
equcom |
|
20 |
18 19
|
bitrdi |
|
21 |
20
|
rexbidva |
|
22 |
|
risset |
|
23 |
21 22
|
bitr4di |
|
24 |
23
|
eqabcdv |
|
25 |
|
rex0 |
|
26 |
|
left0s |
|
27 |
26
|
rexeqi |
|
28 |
25 27
|
mtbir |
|
29 |
28
|
abf |
|
30 |
29
|
a1i |
|
31 |
24 30
|
uneq12d |
|
32 |
|
un0 |
|
33 |
31 32
|
eqtrdi |
|
34 |
|
elun2 |
|
35 |
|
oveq1 |
|
36 |
|
id |
|
37 |
35 36
|
eqeq12d |
|
38 |
37
|
rspcva |
|
39 |
34 12 38
|
syl2anr |
|
40 |
39
|
eqeq2d |
|
41 |
|
equcom |
|
42 |
40 41
|
bitrdi |
|
43 |
42
|
rexbidva |
|
44 |
|
risset |
|
45 |
43 44
|
bitr4di |
|
46 |
45
|
eqabcdv |
|
47 |
|
rex0 |
|
48 |
|
right0s |
|
49 |
48
|
rexeqi |
|
50 |
47 49
|
mtbir |
|
51 |
50
|
abf |
|
52 |
51
|
a1i |
|
53 |
46 52
|
uneq12d |
|
54 |
|
un0 |
|
55 |
53 54
|
eqtrdi |
|
56 |
33 55
|
oveq12d |
|
57 |
|
lrcut |
|
58 |
57
|
adantr |
|
59 |
10 56 58
|
3eqtrd |
|
60 |
59
|
ex |
|
61 |
3 6 60
|
noinds |
|