| Step |
Hyp |
Ref |
Expression |
| 1 |
|
enrer |
|
| 2 |
1
|
a1i |
|
| 3 |
|
prsrlem1 |
|
| 4 |
|
addcmpblnr |
|
| 5 |
4
|
imp |
|
| 6 |
3 5
|
syl |
|
| 7 |
2 6
|
erthi |
|
| 8 |
7
|
adantrlr |
|
| 9 |
8
|
adantrrr |
|
| 10 |
|
simprlr |
|
| 11 |
|
simprrr |
|
| 12 |
9 10 11
|
3eqtr4d |
|
| 13 |
12
|
expr |
|
| 14 |
13
|
exlimdvv |
|
| 15 |
14
|
exlimdvv |
|
| 16 |
15
|
ex |
|
| 17 |
16
|
exlimdvv |
|
| 18 |
17
|
exlimdvv |
|
| 19 |
18
|
impd |
|
| 20 |
19
|
alrimivv |
|
| 21 |
|
opeq12 |
|
| 22 |
21
|
eceq1d |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
23
|
anbi1d |
|
| 25 |
|
simpl |
|
| 26 |
25
|
oveq1d |
|
| 27 |
|
simpr |
|
| 28 |
27
|
oveq1d |
|
| 29 |
26 28
|
opeq12d |
|
| 30 |
29
|
eceq1d |
|
| 31 |
30
|
eqeq2d |
|
| 32 |
24 31
|
anbi12d |
|
| 33 |
|
opeq12 |
|
| 34 |
33
|
eceq1d |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
35
|
anbi2d |
|
| 37 |
|
simpl |
|
| 38 |
37
|
oveq2d |
|
| 39 |
|
simpr |
|
| 40 |
39
|
oveq2d |
|
| 41 |
38 40
|
opeq12d |
|
| 42 |
41
|
eceq1d |
|
| 43 |
42
|
eqeq2d |
|
| 44 |
36 43
|
anbi12d |
|
| 45 |
32 44
|
cbvex4vw |
|
| 46 |
45
|
anbi2i |
|
| 47 |
46
|
imbi1i |
|
| 48 |
47
|
2albii |
|
| 49 |
20 48
|
sylibr |
|
| 50 |
|
eqeq1 |
|
| 51 |
50
|
anbi2d |
|
| 52 |
51
|
4exbidv |
|
| 53 |
52
|
mo4 |
|
| 54 |
49 53
|
sylibr |
|