Metamath Proof Explorer


Theorem addsrmo

Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019)

Ref Expression
Assertion addsrmo A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 * z w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹

Proof

Step Hyp Ref Expression
1 enrer ~ 𝑹 Er 𝑷 × 𝑷
2 1 a1i A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 ~ 𝑹 Er 𝑷 × 𝑷
3 prsrlem1 A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w 𝑷 v 𝑷 s 𝑷 f 𝑷 u 𝑷 t 𝑷 g 𝑷 h 𝑷 w + 𝑷 f = v + 𝑷 s u + 𝑷 h = t + 𝑷 g
4 addcmpblnr w 𝑷 v 𝑷 s 𝑷 f 𝑷 u 𝑷 t 𝑷 g 𝑷 h 𝑷 w + 𝑷 f = v + 𝑷 s u + 𝑷 h = t + 𝑷 g w + 𝑷 u v + 𝑷 t ~ 𝑹 s + 𝑷 g f + 𝑷 h
5 4 imp w 𝑷 v 𝑷 s 𝑷 f 𝑷 u 𝑷 t 𝑷 g 𝑷 h 𝑷 w + 𝑷 f = v + 𝑷 s u + 𝑷 h = t + 𝑷 g w + 𝑷 u v + 𝑷 t ~ 𝑹 s + 𝑷 g f + 𝑷 h
6 3 5 syl A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w + 𝑷 u v + 𝑷 t ~ 𝑹 s + 𝑷 g f + 𝑷 h
7 2 6 erthi A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w + 𝑷 u v + 𝑷 t ~ 𝑹 = s + 𝑷 g f + 𝑷 h ~ 𝑹
8 7 adantrlr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 w + 𝑷 u v + 𝑷 t ~ 𝑹 = s + 𝑷 g f + 𝑷 h ~ 𝑹
9 8 adantrrr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 w + 𝑷 u v + 𝑷 t ~ 𝑹 = s + 𝑷 g f + 𝑷 h ~ 𝑹
10 simprlr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹
11 simprrr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹
12 9 10 11 3eqtr4d A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
13 12 expr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
14 13 exlimdvv A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
15 14 exlimdvv A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
16 15 ex A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
17 16 exlimdvv A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
18 17 exlimdvv A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
19 18 impd A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
20 19 alrimivv A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 z q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
21 opeq12 w = s v = f w v = s f
22 21 eceq1d w = s v = f w v ~ 𝑹 = s f ~ 𝑹
23 22 eqeq2d w = s v = f A = w v ~ 𝑹 A = s f ~ 𝑹
24 23 anbi1d w = s v = f A = w v ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = u t ~ 𝑹
25 simpl w = s v = f w = s
26 25 oveq1d w = s v = f w + 𝑷 u = s + 𝑷 u
27 simpr w = s v = f v = f
28 27 oveq1d w = s v = f v + 𝑷 t = f + 𝑷 t
29 26 28 opeq12d w = s v = f w + 𝑷 u v + 𝑷 t = s + 𝑷 u f + 𝑷 t
30 29 eceq1d w = s v = f w + 𝑷 u v + 𝑷 t ~ 𝑹 = s + 𝑷 u f + 𝑷 t ~ 𝑹
31 30 eqeq2d w = s v = f q = w + 𝑷 u v + 𝑷 t ~ 𝑹 q = s + 𝑷 u f + 𝑷 t ~ 𝑹
32 24 31 anbi12d w = s v = f A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = u t ~ 𝑹 q = s + 𝑷 u f + 𝑷 t ~ 𝑹
33 opeq12 u = g t = h u t = g h
34 33 eceq1d u = g t = h u t ~ 𝑹 = g h ~ 𝑹
35 34 eqeq2d u = g t = h B = u t ~ 𝑹 B = g h ~ 𝑹
36 35 anbi2d u = g t = h A = s f ~ 𝑹 B = u t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹
37 simpl u = g t = h u = g
38 37 oveq2d u = g t = h s + 𝑷 u = s + 𝑷 g
39 simpr u = g t = h t = h
40 39 oveq2d u = g t = h f + 𝑷 t = f + 𝑷 h
41 38 40 opeq12d u = g t = h s + 𝑷 u f + 𝑷 t = s + 𝑷 g f + 𝑷 h
42 41 eceq1d u = g t = h s + 𝑷 u f + 𝑷 t ~ 𝑹 = s + 𝑷 g f + 𝑷 h ~ 𝑹
43 42 eqeq2d u = g t = h q = s + 𝑷 u f + 𝑷 t ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹
44 36 43 anbi12d u = g t = h A = s f ~ 𝑹 B = u t ~ 𝑹 q = s + 𝑷 u f + 𝑷 t ~ 𝑹 A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹
45 32 44 cbvex4vw w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹
46 45 anbi2i w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹
47 46 imbi1i w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 z = q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
48 47 2albii z q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 z = q z q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 s f g h A = s f ~ 𝑹 B = g h ~ 𝑹 q = s + 𝑷 g f + 𝑷 h ~ 𝑹 z = q
49 20 48 sylibr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 z q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 z = q
50 eqeq1 z = q z = w + 𝑷 u v + 𝑷 t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹
51 50 anbi2d z = q A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹
52 51 4exbidv z = q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹
53 52 mo4 * z w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 z q w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 q = w + 𝑷 u v + 𝑷 t ~ 𝑹 z = q
54 49 53 sylibr A 𝑷 × 𝑷 / ~ 𝑹 B 𝑷 × 𝑷 / ~ 𝑹 * z w v u t A = w v ~ 𝑹 B = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹