Metamath Proof Explorer


Theorem addsrpr

Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion addsrpr A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 + 𝑹 C D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹

Proof

Step Hyp Ref Expression
1 opelxpi A 𝑷 B 𝑷 A B 𝑷 × 𝑷
2 enrex ~ 𝑹 V
3 2 ecelqsi A B 𝑷 × 𝑷 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
4 1 3 syl A 𝑷 B 𝑷 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
5 opelxpi C 𝑷 D 𝑷 C D 𝑷 × 𝑷
6 2 ecelqsi C D 𝑷 × 𝑷 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
7 5 6 syl C 𝑷 D 𝑷 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
8 4 7 anim12i A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
9 eqid A B ~ 𝑹 = A B ~ 𝑹
10 eqid C D ~ 𝑹 = C D ~ 𝑹
11 9 10 pm3.2i A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
12 eqid A + 𝑷 C B + 𝑷 D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹
13 opeq12 w = A v = B w v = A B
14 13 eceq1d w = A v = B w v ~ 𝑹 = A B ~ 𝑹
15 14 eqeq2d w = A v = B A B ~ 𝑹 = w v ~ 𝑹 A B ~ 𝑹 = A B ~ 𝑹
16 15 anbi1d w = A v = B A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
17 simpl w = A v = B w = A
18 17 oveq1d w = A v = B w + 𝑷 C = A + 𝑷 C
19 simpr w = A v = B v = B
20 19 oveq1d w = A v = B v + 𝑷 D = B + 𝑷 D
21 18 20 opeq12d w = A v = B w + 𝑷 C v + 𝑷 D = A + 𝑷 C B + 𝑷 D
22 21 eceq1d w = A v = B w + 𝑷 C v + 𝑷 D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹
23 22 eqeq2d w = A v = B A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹
24 16 23 anbi12d w = A v = B A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹
25 24 spc2egv A 𝑷 B 𝑷 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹 w v A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹
26 opeq12 u = C t = D u t = C D
27 26 eceq1d u = C t = D u t ~ 𝑹 = C D ~ 𝑹
28 27 eqeq2d u = C t = D C D ~ 𝑹 = u t ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
29 28 anbi2d u = C t = D A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
30 simpl u = C t = D u = C
31 30 oveq2d u = C t = D w + 𝑷 u = w + 𝑷 C
32 simpr u = C t = D t = D
33 32 oveq2d u = C t = D v + 𝑷 t = v + 𝑷 D
34 31 33 opeq12d u = C t = D w + 𝑷 u v + 𝑷 t = w + 𝑷 C v + 𝑷 D
35 34 eceq1d u = C t = D w + 𝑷 u v + 𝑷 t ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹
36 35 eqeq2d u = C t = D A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹
37 29 36 anbi12d u = C t = D A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹
38 37 spc2egv C 𝑷 D 𝑷 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹 u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
39 38 2eximdv C 𝑷 D 𝑷 w v A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 C v + 𝑷 D ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
40 25 39 sylan9 A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
41 11 12 40 mp2ani A 𝑷 B 𝑷 C 𝑷 D 𝑷 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
42 ecexg ~ 𝑹 V A + 𝑷 C B + 𝑷 D ~ 𝑹 V
43 2 42 ax-mp A + 𝑷 C B + 𝑷 D ~ 𝑹 V
44 simp1 x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 x = A B ~ 𝑹
45 44 eqeq1d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 x = w v ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹
46 simp2 x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 y = C D ~ 𝑹
47 46 eqeq1d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 y = u t ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹
48 45 47 anbi12d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 x = w v ~ 𝑹 y = u t ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹
49 simp3 x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹
50 49 eqeq1d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
51 48 50 anbi12d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
52 51 4exbidv x = A B ~ 𝑹 y = C D ~ 𝑹 z = A + 𝑷 C B + 𝑷 D ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹
53 addsrmo x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 * z w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹
54 df-plr + 𝑹 = x y z | x 𝑹 y 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹
55 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
56 55 eleq2i x 𝑹 x 𝑷 × 𝑷 / ~ 𝑹
57 55 eleq2i y 𝑹 y 𝑷 × 𝑷 / ~ 𝑹
58 56 57 anbi12i x 𝑹 y 𝑹 x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹
59 58 anbi1i x 𝑹 y 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹
60 59 oprabbii x y z | x 𝑹 y 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹 = x y z | x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹
61 54 60 eqtri + 𝑹 = x y z | x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w + 𝑷 u v + 𝑷 t ~ 𝑹
62 52 53 61 ovig A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 V w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹 A B ~ 𝑹 + 𝑹 C D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹
63 43 62 mp3an3 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A + 𝑷 C B + 𝑷 D ~ 𝑹 = w + 𝑷 u v + 𝑷 t ~ 𝑹 A B ~ 𝑹 + 𝑹 C D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹
64 8 41 63 sylc A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 + 𝑹 C D ~ 𝑹 = A + 𝑷 C B + 𝑷 D ~ 𝑹