Metamath Proof Explorer


Theorem addsub12

Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005)

Ref Expression
Assertion addsub12 A B C A + B - C = B + A - C

Proof

Step Hyp Ref Expression
1 subadd23 A C B A - C + B = A + B - C
2 subcl A C A C
3 addcom A C B A - C + B = B + A - C
4 2 3 stoic3 A C B A - C + B = B + A - C
5 1 4 eqtr3d A C B A + B - C = B + A - C
6 5 3com23 A B C A + B - C = B + A - C