Metamath Proof Explorer


Theorem addsub4d

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
addsub4d.4 φ D
Assertion addsub4d φ A + B - C + D = A C + B - D

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 addsub4d.4 φ D
5 addsub4 A B C D A + B - C + D = A C + B - D
6 1 2 3 4 5 syl22anc φ A + B - C + D = A C + B - D