Metamath Proof Explorer


Theorem addsubd

Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
Assertion addsubd φ A + B - C = A - C + B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 addsub A B C A + B - C = A - C + B
5 1 2 3 4 syl3anc φ A + B - C = A - C + B