Metamath Proof Explorer


Theorem addsubeq0

Description: The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023)

Ref Expression
Assertion addsubeq0 A B A + B = A B B = 0

Proof

Step Hyp Ref Expression
1 negsub A B A + B = A B
2 1 eqcomd A B A B = A + B
3 2 eqeq2d A B A + B = A B A + B = A + B
4 negcl B B
5 4 adantl A B B
6 addcan A B B A + B = A + B B = B
7 5 6 mpd3an3 A B A + B = A + B B = B
8 eqneg B B = B B = 0
9 8 adantl A B B = B B = 0
10 3 7 9 3bitrd A B A + B = A B B = 0