Metamath Proof Explorer


Theorem addsubeq0

Description: The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023)

Ref Expression
Assertion addsubeq0 ABA+B=ABB=0

Proof

Step Hyp Ref Expression
1 negsub ABA+B=AB
2 1 eqcomd ABAB=A+B
3 2 eqeq2d ABA+B=ABA+B=A+B
4 negcl BB
5 4 adantl ABB
6 addcan ABBA+B=A+BB=B
7 5 6 mpd3an3 ABA+B=A+BB=B
8 eqneg BB=BB=0
9 8 adantl ABB=BB=0
10 3 7 9 3bitrd ABA+B=ABB=0