Metamath Proof Explorer


Theorem addsubeq4d

Description: Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
addsub4d.4 φ D
Assertion addsubeq4d φ A + B = C + D C A = B D

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 addsub4d.4 φ D
5 addsubeq4 A B C D A + B = C + D C A = B D
6 1 2 3 4 5 syl22anc φ A + B = C + D C A = B D