Metamath Proof Explorer


Theorem addsubs4d

Description: Rearrangement of four terms in mixed addition and subtraction. Surreal version. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses addsubs4d.1 φ A No
addsubs4d.2 φ B No
addsubs4d.3 φ C No
addsubs4d.4 φ D No
Assertion addsubs4d φ A + s B - s C + s D = A - s C + s B - s D

Proof

Step Hyp Ref Expression
1 addsubs4d.1 φ A No
2 addsubs4d.2 φ B No
3 addsubs4d.3 φ C No
4 addsubs4d.4 φ D No
5 1 2 3 addsubsd φ A + s B - s C = A - s C + s B
6 5 oveq1d φ A + s B - s C - s D = A - s C + s B - s D
7 1 2 addscld φ A + s B No
8 7 3 4 subsubs4d φ A + s B - s C - s D = A + s B - s C + s D
9 1 3 subscld φ A - s C No
10 9 2 4 addsubsassd φ A - s C + s B - s D = A - s C + s B - s D
11 6 8 10 3eqtr3d φ A + s B - s C + s D = A - s C + s B - s D