Metamath Proof Explorer


Theorem addsval

Description: The value of surreal addition. Definition from Conway p. 5. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion addsval A No B No A + s B = y | l L A y = l + s B z | l L B z = A + s l | s y | r R A y = r + s B z | r R B z = A + s r

Proof

Step Hyp Ref Expression
1 df-adds + s = norec2 s #A# x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r
2 1 norec2ov A No B No A + s B = A B x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r + s L A R A A × L B R B B A B
3 opex A B V
4 addsfn + s Fn No × No
5 fnfun + s Fn No × No Fun + s
6 4 5 ax-mp Fun + s
7 fvex L A V
8 fvex R A V
9 7 8 unex L A R A V
10 snex A V
11 9 10 unex L A R A A V
12 fvex L B V
13 fvex R B V
14 12 13 unex L B R B V
15 snex B V
16 14 15 unex L B R B B V
17 11 16 xpex L A R A A × L B R B B V
18 17 difexi L A R A A × L B R B B A B V
19 resfunexg Fun + s L A R A A × L B R B B A B V + s L A R A A × L B R B B A B V
20 6 18 19 mp2an + s L A R A A × L B R B B A B V
21 2fveq3 x = A B L 1 st x = L 1 st A B
22 fveq2 x = A B 2 nd x = 2 nd A B
23 22 oveq2d x = A B l a 2 nd x = l a 2 nd A B
24 23 eqeq2d x = A B y = l a 2 nd x y = l a 2 nd A B
25 21 24 rexeqbidv x = A B l L 1 st x y = l a 2 nd x l L 1 st A B y = l a 2 nd A B
26 25 abbidv x = A B y | l L 1 st x y = l a 2 nd x = y | l L 1 st A B y = l a 2 nd A B
27 2fveq3 x = A B L 2 nd x = L 2 nd A B
28 fveq2 x = A B 1 st x = 1 st A B
29 28 oveq1d x = A B 1 st x a l = 1 st A B a l
30 29 eqeq2d x = A B z = 1 st x a l z = 1 st A B a l
31 27 30 rexeqbidv x = A B l L 2 nd x z = 1 st x a l l L 2 nd A B z = 1 st A B a l
32 31 abbidv x = A B z | l L 2 nd x z = 1 st x a l = z | l L 2 nd A B z = 1 st A B a l
33 26 32 uneq12d x = A B y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l = y | l L 1 st A B y = l a 2 nd A B z | l L 2 nd A B z = 1 st A B a l
34 2fveq3 x = A B R 1 st x = R 1 st A B
35 22 oveq2d x = A B r a 2 nd x = r a 2 nd A B
36 35 eqeq2d x = A B y = r a 2 nd x y = r a 2 nd A B
37 34 36 rexeqbidv x = A B r R 1 st x y = r a 2 nd x r R 1 st A B y = r a 2 nd A B
38 37 abbidv x = A B y | r R 1 st x y = r a 2 nd x = y | r R 1 st A B y = r a 2 nd A B
39 2fveq3 x = A B R 2 nd x = R 2 nd A B
40 28 oveq1d x = A B 1 st x a r = 1 st A B a r
41 40 eqeq2d x = A B z = 1 st x a r z = 1 st A B a r
42 39 41 rexeqbidv x = A B r R 2 nd x z = 1 st x a r r R 2 nd A B z = 1 st A B a r
43 42 abbidv x = A B z | r R 2 nd x z = 1 st x a r = z | r R 2 nd A B z = 1 st A B a r
44 38 43 uneq12d x = A B y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r = y | r R 1 st A B y = r a 2 nd A B z | r R 2 nd A B z = 1 st A B a r
45 33 44 oveq12d x = A B y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r = y | l L 1 st A B y = l a 2 nd A B z | l L 2 nd A B z = 1 st A B a l | s y | r R 1 st A B y = r a 2 nd A B z | r R 2 nd A B z = 1 st A B a r
46 oveq a = + s L A R A A × L B R B B A B l a 2 nd A B = l + s L A R A A × L B R B B A B 2 nd A B
47 46 eqeq2d a = + s L A R A A × L B R B B A B y = l a 2 nd A B y = l + s L A R A A × L B R B B A B 2 nd A B
48 47 rexbidv a = + s L A R A A × L B R B B A B l L 1 st A B y = l a 2 nd A B l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B
49 48 abbidv a = + s L A R A A × L B R B B A B y | l L 1 st A B y = l a 2 nd A B = y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B
50 oveq a = + s L A R A A × L B R B B A B 1 st A B a l = 1 st A B + s L A R A A × L B R B B A B l
51 50 eqeq2d a = + s L A R A A × L B R B B A B z = 1 st A B a l z = 1 st A B + s L A R A A × L B R B B A B l
52 51 rexbidv a = + s L A R A A × L B R B B A B l L 2 nd A B z = 1 st A B a l l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l
53 52 abbidv a = + s L A R A A × L B R B B A B z | l L 2 nd A B z = 1 st A B a l = z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l
54 49 53 uneq12d a = + s L A R A A × L B R B B A B y | l L 1 st A B y = l a 2 nd A B z | l L 2 nd A B z = 1 st A B a l = y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l
55 oveq a = + s L A R A A × L B R B B A B r a 2 nd A B = r + s L A R A A × L B R B B A B 2 nd A B
56 55 eqeq2d a = + s L A R A A × L B R B B A B y = r a 2 nd A B y = r + s L A R A A × L B R B B A B 2 nd A B
57 56 rexbidv a = + s L A R A A × L B R B B A B r R 1 st A B y = r a 2 nd A B r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B
58 57 abbidv a = + s L A R A A × L B R B B A B y | r R 1 st A B y = r a 2 nd A B = y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B
59 oveq a = + s L A R A A × L B R B B A B 1 st A B a r = 1 st A B + s L A R A A × L B R B B A B r
60 59 eqeq2d a = + s L A R A A × L B R B B A B z = 1 st A B a r z = 1 st A B + s L A R A A × L B R B B A B r
61 60 rexbidv a = + s L A R A A × L B R B B A B r R 2 nd A B z = 1 st A B a r r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r
62 61 abbidv a = + s L A R A A × L B R B B A B z | r R 2 nd A B z = 1 st A B a r = z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r
63 58 62 uneq12d a = + s L A R A A × L B R B B A B y | r R 1 st A B y = r a 2 nd A B z | r R 2 nd A B z = 1 st A B a r = y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r
64 54 63 oveq12d a = + s L A R A A × L B R B B A B y | l L 1 st A B y = l a 2 nd A B z | l L 2 nd A B z = 1 st A B a l | s y | r R 1 st A B y = r a 2 nd A B z | r R 2 nd A B z = 1 st A B a r = y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l | s y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r
65 eqid x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r = x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r
66 ovex y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l | s y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r V
67 45 64 65 66 ovmpo A B V + s L A R A A × L B R B B A B V A B x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r + s L A R A A × L B R B B A B = y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l | s y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r
68 3 20 67 mp2an A B x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r + s L A R A A × L B R B B A B = y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l | s y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r
69 op1stg A No B No 1 st A B = A
70 69 fveq2d A No B No L 1 st A B = L A
71 70 eleq2d A No B No l L 1 st A B l L A
72 op2ndg A No B No 2 nd A B = B
73 72 adantr A No B No l L A 2 nd A B = B
74 73 oveq2d A No B No l L A l + s L A R A A × L B R B B A B 2 nd A B = l + s L A R A A × L B R B B A B B
75 elun1 l L A l L A R A
76 elun1 l L A R A l L A R A A
77 75 76 syl l L A l L A R A A
78 77 adantl A No B No l L A l L A R A A
79 snidg B No B B
80 elun2 B B B L B R B B
81 79 80 syl B No B L B R B B
82 81 adantl A No B No B L B R B B
83 82 adantr A No B No l L A B L B R B B
84 78 83 opelxpd A No B No l L A l B L A R A A × L B R B B
85 leftirr ¬ A L A
86 85 a1i A No B No ¬ A L A
87 eleq1 l = A l L A A L A
88 87 notbid l = A ¬ l L A ¬ A L A
89 86 88 syl5ibrcom A No B No l = A ¬ l L A
90 89 necon2ad A No B No l L A l A
91 90 imp A No B No l L A l A
92 91 orcd A No B No l L A l A B B
93 simpr A No B No l L A l L A
94 simplr A No B No l L A B No
95 opthneg l L A B No l B A B l A B B
96 93 94 95 syl2anc A No B No l L A l B A B l A B B
97 92 96 mpbird A No B No l L A l B A B
98 eldifsn l B L A R A A × L B R B B A B l B L A R A A × L B R B B l B A B
99 84 97 98 sylanbrc A No B No l L A l B L A R A A × L B R B B A B
100 99 fvresd A No B No l L A + s L A R A A × L B R B B A B l B = + s l B
101 df-ov l + s L A R A A × L B R B B A B B = + s L A R A A × L B R B B A B l B
102 df-ov l + s B = + s l B
103 100 101 102 3eqtr4g A No B No l L A l + s L A R A A × L B R B B A B B = l + s B
104 74 103 eqtrd A No B No l L A l + s L A R A A × L B R B B A B 2 nd A B = l + s B
105 104 eqeq2d A No B No l L A y = l + s L A R A A × L B R B B A B 2 nd A B y = l + s B
106 71 105 sylbida A No B No l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B y = l + s B
107 70 106 rexeqbidva A No B No l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B l L A y = l + s B
108 107 abbidv A No B No y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B = y | l L A y = l + s B
109 72 fveq2d A No B No L 2 nd A B = L B
110 109 eleq2d A No B No l L 2 nd A B l L B
111 69 adantr A No B No l L B 1 st A B = A
112 111 oveq1d A No B No l L B 1 st A B + s L A R A A × L B R B B A B l = A + s L A R A A × L B R B B A B l
113 snidg A No A A
114 113 adantr A No B No A A
115 elun2 A A A L A R A A
116 114 115 syl A No B No A L A R A A
117 116 adantr A No B No l L B A L A R A A
118 elun1 l L B l L B R B
119 elun1 l L B R B l L B R B B
120 118 119 syl l L B l L B R B B
121 120 adantl A No B No l L B l L B R B B
122 117 121 opelxpd A No B No l L B A l L A R A A × L B R B B
123 leftirr ¬ B L B
124 123 a1i A No B No ¬ B L B
125 eleq1 l = B l L B B L B
126 125 notbid l = B ¬ l L B ¬ B L B
127 124 126 syl5ibrcom A No B No l = B ¬ l L B
128 127 necon2ad A No B No l L B l B
129 128 imp A No B No l L B l B
130 129 olcd A No B No l L B A A l B
131 opthneg A No l L B A l A B A A l B
132 131 adantlr A No B No l L B A l A B A A l B
133 130 132 mpbird A No B No l L B A l A B
134 eldifsn A l L A R A A × L B R B B A B A l L A R A A × L B R B B A l A B
135 122 133 134 sylanbrc A No B No l L B A l L A R A A × L B R B B A B
136 135 fvresd A No B No l L B + s L A R A A × L B R B B A B A l = + s A l
137 df-ov A + s L A R A A × L B R B B A B l = + s L A R A A × L B R B B A B A l
138 df-ov A + s l = + s A l
139 136 137 138 3eqtr4g A No B No l L B A + s L A R A A × L B R B B A B l = A + s l
140 112 139 eqtrd A No B No l L B 1 st A B + s L A R A A × L B R B B A B l = A + s l
141 140 eqeq2d A No B No l L B z = 1 st A B + s L A R A A × L B R B B A B l z = A + s l
142 110 141 sylbida A No B No l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l z = A + s l
143 109 142 rexeqbidva A No B No l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l l L B z = A + s l
144 143 abbidv A No B No z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l = z | l L B z = A + s l
145 108 144 uneq12d A No B No y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l = y | l L A y = l + s B z | l L B z = A + s l
146 69 fveq2d A No B No R 1 st A B = R A
147 146 eleq2d A No B No r R 1 st A B r R A
148 72 adantr A No B No r R A 2 nd A B = B
149 148 oveq2d A No B No r R A r + s L A R A A × L B R B B A B 2 nd A B = r + s L A R A A × L B R B B A B B
150 elun2 r R A r L A R A
151 elun1 r L A R A r L A R A A
152 150 151 syl r R A r L A R A A
153 152 adantl A No B No r R A r L A R A A
154 82 adantr A No B No r R A B L B R B B
155 153 154 opelxpd A No B No r R A r B L A R A A × L B R B B
156 rightirr ¬ A R A
157 156 a1i A No B No ¬ A R A
158 eleq1 r = A r R A A R A
159 158 notbid r = A ¬ r R A ¬ A R A
160 157 159 syl5ibrcom A No B No r = A ¬ r R A
161 160 necon2ad A No B No r R A r A
162 161 imp A No B No r R A r A
163 162 orcd A No B No r R A r A B B
164 simpr A No B No r R A r R A
165 simplr A No B No r R A B No
166 opthneg r R A B No r B A B r A B B
167 164 165 166 syl2anc A No B No r R A r B A B r A B B
168 163 167 mpbird A No B No r R A r B A B
169 eldifsn r B L A R A A × L B R B B A B r B L A R A A × L B R B B r B A B
170 155 168 169 sylanbrc A No B No r R A r B L A R A A × L B R B B A B
171 170 fvresd A No B No r R A + s L A R A A × L B R B B A B r B = + s r B
172 df-ov r + s L A R A A × L B R B B A B B = + s L A R A A × L B R B B A B r B
173 df-ov r + s B = + s r B
174 171 172 173 3eqtr4g A No B No r R A r + s L A R A A × L B R B B A B B = r + s B
175 149 174 eqtrd A No B No r R A r + s L A R A A × L B R B B A B 2 nd A B = r + s B
176 175 eqeq2d A No B No r R A y = r + s L A R A A × L B R B B A B 2 nd A B y = r + s B
177 147 176 sylbida A No B No r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B y = r + s B
178 146 177 rexeqbidva A No B No r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B r R A y = r + s B
179 178 abbidv A No B No y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B = y | r R A y = r + s B
180 72 fveq2d A No B No R 2 nd A B = R B
181 180 eleq2d A No B No r R 2 nd A B r R B
182 69 adantr A No B No r R B 1 st A B = A
183 182 oveq1d A No B No r R B 1 st A B + s L A R A A × L B R B B A B r = A + s L A R A A × L B R B B A B r
184 114 adantr A No B No r R B A A
185 184 115 syl A No B No r R B A L A R A A
186 elun2 r R B r L B R B
187 186 adantl A No B No r R B r L B R B
188 elun1 r L B R B r L B R B B
189 187 188 syl A No B No r R B r L B R B B
190 185 189 opelxpd A No B No r R B A r L A R A A × L B R B B
191 rightirr ¬ B R B
192 191 a1i A No B No ¬ B R B
193 eleq1 r = B r R B B R B
194 193 notbid r = B ¬ r R B ¬ B R B
195 192 194 syl5ibrcom A No B No r = B ¬ r R B
196 195 necon2ad A No B No r R B r B
197 196 imp A No B No r R B r B
198 197 olcd A No B No r R B A A r B
199 opthneg A No r R B A r A B A A r B
200 199 adantlr A No B No r R B A r A B A A r B
201 198 200 mpbird A No B No r R B A r A B
202 eldifsn A r L A R A A × L B R B B A B A r L A R A A × L B R B B A r A B
203 190 201 202 sylanbrc A No B No r R B A r L A R A A × L B R B B A B
204 203 fvresd A No B No r R B + s L A R A A × L B R B B A B A r = + s A r
205 df-ov A + s L A R A A × L B R B B A B r = + s L A R A A × L B R B B A B A r
206 df-ov A + s r = + s A r
207 204 205 206 3eqtr4g A No B No r R B A + s L A R A A × L B R B B A B r = A + s r
208 183 207 eqtrd A No B No r R B 1 st A B + s L A R A A × L B R B B A B r = A + s r
209 208 eqeq2d A No B No r R B z = 1 st A B + s L A R A A × L B R B B A B r z = A + s r
210 181 209 sylbida A No B No r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r z = A + s r
211 180 210 rexeqbidva A No B No r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r r R B z = A + s r
212 211 abbidv A No B No z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r = z | r R B z = A + s r
213 179 212 uneq12d A No B No y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r = y | r R A y = r + s B z | r R B z = A + s r
214 145 213 oveq12d A No B No y | l L 1 st A B y = l + s L A R A A × L B R B B A B 2 nd A B z | l L 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B l | s y | r R 1 st A B y = r + s L A R A A × L B R B B A B 2 nd A B z | r R 2 nd A B z = 1 st A B + s L A R A A × L B R B B A B r = y | l L A y = l + s B z | l L B z = A + s l | s y | r R A y = r + s B z | r R B z = A + s r
215 68 214 eqtrid A No B No A B x V , a V y | l L 1 st x y = l a 2 nd x z | l L 2 nd x z = 1 st x a l | s y | r R 1 st x y = r a 2 nd x z | r R 2 nd x z = 1 st x a r + s L A R A A × L B R B B A B = y | l L A y = l + s B z | l L B z = A + s l | s y | r R A y = r + s B z | r R B z = A + s r
216 2 215 eqtrd A No B No A + s B = y | l L A y = l + s B z | l L B z = A + s l | s y | r R A y = r + s B z | r R B z = A + s r