Metamath Proof Explorer


Theorem addsval2

Description: The value of surreal addition with different choices for each bound variable. Definition from Conway p. 5. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addsval2 A No B No A + s B = y | l L A y = l + s B z | m L B z = A + s m | s w | r R A w = r + s B t | s R B t = A + s s

Proof

Step Hyp Ref Expression
1 addsval A No B No A + s B = a | b L A a = b + s B c | b L B c = A + s b | s a | d R A a = d + s B c | d R B c = A + s d
2 eqeq1 a = y a = b + s B y = b + s B
3 2 rexbidv a = y b L A a = b + s B b L A y = b + s B
4 oveq1 b = l b + s B = l + s B
5 4 eqeq2d b = l y = b + s B y = l + s B
6 5 cbvrexvw b L A y = b + s B l L A y = l + s B
7 3 6 bitrdi a = y b L A a = b + s B l L A y = l + s B
8 7 cbvabv a | b L A a = b + s B = y | l L A y = l + s B
9 eqeq1 c = z c = A + s b z = A + s b
10 9 rexbidv c = z b L B c = A + s b b L B z = A + s b
11 oveq2 b = m A + s b = A + s m
12 11 eqeq2d b = m z = A + s b z = A + s m
13 12 cbvrexvw b L B z = A + s b m L B z = A + s m
14 10 13 bitrdi c = z b L B c = A + s b m L B z = A + s m
15 14 cbvabv c | b L B c = A + s b = z | m L B z = A + s m
16 8 15 uneq12i a | b L A a = b + s B c | b L B c = A + s b = y | l L A y = l + s B z | m L B z = A + s m
17 eqeq1 a = w a = d + s B w = d + s B
18 17 rexbidv a = w d R A a = d + s B d R A w = d + s B
19 oveq1 d = r d + s B = r + s B
20 19 eqeq2d d = r w = d + s B w = r + s B
21 20 cbvrexvw d R A w = d + s B r R A w = r + s B
22 18 21 bitrdi a = w d R A a = d + s B r R A w = r + s B
23 22 cbvabv a | d R A a = d + s B = w | r R A w = r + s B
24 eqeq1 c = t c = A + s d t = A + s d
25 24 rexbidv c = t d R B c = A + s d d R B t = A + s d
26 oveq2 d = s A + s d = A + s s
27 26 eqeq2d d = s t = A + s d t = A + s s
28 27 cbvrexvw d R B t = A + s d s R B t = A + s s
29 25 28 bitrdi c = t d R B c = A + s d s R B t = A + s s
30 29 cbvabv c | d R B c = A + s d = t | s R B t = A + s s
31 23 30 uneq12i a | d R A a = d + s B c | d R B c = A + s d = w | r R A w = r + s B t | s R B t = A + s s
32 16 31 oveq12i a | b L A a = b + s B c | b L B c = A + s b | s a | d R A a = d + s B c | d R B c = A + s d = y | l L A y = l + s B z | m L B z = A + s m | s w | r R A w = r + s B t | s R B t = A + s s
33 1 32 eqtrdi A No B No A + s B = y | l L A y = l + s B z | m L B z = A + s m | s w | r R A w = r + s B t | s R B t = A + s s