Metamath Proof Explorer


Theorem adj0

Description: Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj0 adj h 0 hop = 0 hop

Proof

Step Hyp Ref Expression
1 ho0f 0 hop :
2 ho0val x 0 hop x = 0
3 2 oveq1d x 0 hop x ih y = 0 ih y
4 hi01 y 0 ih y = 0
5 3 4 sylan9eq x y 0 hop x ih y = 0
6 ho0val y 0 hop y = 0
7 6 oveq2d y x ih 0 hop y = x ih 0
8 hi02 x x ih 0 = 0
9 7 8 sylan9eqr x y x ih 0 hop y = 0
10 5 9 eqtr4d x y 0 hop x ih y = x ih 0 hop y
11 10 rgen2 x y 0 hop x ih y = x ih 0 hop y
12 adjeq 0 hop : 0 hop : x y 0 hop x ih y = x ih 0 hop y adj h 0 hop = 0 hop
13 1 1 11 12 mp3an adj h 0 hop = 0 hop