Metamath Proof Explorer


Theorem adj1

Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj1 T dom adj h A B A ih T B = adj h T A ih B

Proof

Step Hyp Ref Expression
1 funadj Fun adj h
2 funfvop Fun adj h T dom adj h T adj h T adj h
3 1 2 mpan T dom adj h T adj h T adj h
4 dfadj2 adj h = z w | z : w : x y x ih z y = w x ih y
5 3 4 eleqtrdi T dom adj h T adj h T z w | z : w : x y x ih z y = w x ih y
6 fvex adj h T V
7 feq1 z = T z : T :
8 fveq1 z = T z y = T y
9 8 oveq2d z = T x ih z y = x ih T y
10 9 eqeq1d z = T x ih z y = w x ih y x ih T y = w x ih y
11 10 2ralbidv z = T x y x ih z y = w x ih y x y x ih T y = w x ih y
12 7 11 3anbi13d z = T z : w : x y x ih z y = w x ih y T : w : x y x ih T y = w x ih y
13 feq1 w = adj h T w : adj h T :
14 fveq1 w = adj h T w x = adj h T x
15 14 oveq1d w = adj h T w x ih y = adj h T x ih y
16 15 eqeq2d w = adj h T x ih T y = w x ih y x ih T y = adj h T x ih y
17 16 2ralbidv w = adj h T x y x ih T y = w x ih y x y x ih T y = adj h T x ih y
18 13 17 3anbi23d w = adj h T T : w : x y x ih T y = w x ih y T : adj h T : x y x ih T y = adj h T x ih y
19 12 18 opelopabg T dom adj h adj h T V T adj h T z w | z : w : x y x ih z y = w x ih y T : adj h T : x y x ih T y = adj h T x ih y
20 6 19 mpan2 T dom adj h T adj h T z w | z : w : x y x ih z y = w x ih y T : adj h T : x y x ih T y = adj h T x ih y
21 5 20 mpbid T dom adj h T : adj h T : x y x ih T y = adj h T x ih y
22 21 simp3d T dom adj h x y x ih T y = adj h T x ih y
23 oveq1 x = A x ih T y = A ih T y
24 fveq2 x = A adj h T x = adj h T A
25 24 oveq1d x = A adj h T x ih y = adj h T A ih y
26 23 25 eqeq12d x = A x ih T y = adj h T x ih y A ih T y = adj h T A ih y
27 fveq2 y = B T y = T B
28 27 oveq2d y = B A ih T y = A ih T B
29 oveq2 y = B adj h T A ih y = adj h T A ih B
30 28 29 eqeq12d y = B A ih T y = adj h T A ih y A ih T B = adj h T A ih B
31 26 30 rspc2v A B x y x ih T y = adj h T x ih y A ih T B = adj h T A ih B
32 22 31 syl5com T dom adj h A B A ih T B = adj h T A ih B
33 32 3impib T dom adj h A B A ih T B = adj h T A ih B