Metamath Proof Explorer


Theorem adj1o

Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj1o adj h : dom adj h 1-1 onto dom adj h

Proof

Step Hyp Ref Expression
1 funadj Fun adj h
2 funfn Fun adj h adj h Fn dom adj h
3 1 2 mpbi adj h Fn dom adj h
4 funcnvadj Fun adj h -1
5 df-rn ran adj h = dom adj h -1
6 cnvadj adj h -1 = adj h
7 6 dmeqi dom adj h -1 = dom adj h
8 5 7 eqtri ran adj h = dom adj h
9 dff1o2 adj h : dom adj h 1-1 onto dom adj h adj h Fn dom adj h Fun adj h -1 ran adj h = dom adj h
10 3 4 8 9 mpbir3an adj h : dom adj h 1-1 onto dom adj h