Metamath Proof Explorer


Theorem adj2

Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adj2 T dom adj h A B T A ih B = A ih adj h T B

Proof

Step Hyp Ref Expression
1 adj1 T dom adj h B A B ih T A = adj h T B ih A
2 simp2 T dom adj h B A B
3 dmadjop T dom adj h T :
4 3 ffvelrnda T dom adj h A T A
5 4 3adant2 T dom adj h B A T A
6 ax-his1 B T A B ih T A = T A ih B
7 2 5 6 syl2anc T dom adj h B A B ih T A = T A ih B
8 adjcl T dom adj h B adj h T B
9 8 3adant3 T dom adj h B A adj h T B
10 simp3 T dom adj h B A A
11 ax-his1 adj h T B A adj h T B ih A = A ih adj h T B
12 9 10 11 syl2anc T dom adj h B A adj h T B ih A = A ih adj h T B
13 1 7 12 3eqtr3d T dom adj h B A T A ih B = A ih adj h T B
14 hicl T A B T A ih B
15 5 2 14 syl2anc T dom adj h B A T A ih B
16 hicl A adj h T B A ih adj h T B
17 10 9 16 syl2anc T dom adj h B A A ih adj h T B
18 cj11 T A ih B A ih adj h T B T A ih B = A ih adj h T B T A ih B = A ih adj h T B
19 15 17 18 syl2anc T dom adj h B A T A ih B = A ih adj h T B T A ih B = A ih adj h T B
20 13 19 mpbid T dom adj h B A T A ih B = A ih adj h T B
21 20 3com23 T dom adj h A B T A ih B = A ih adj h T B