Metamath Proof Explorer


Theorem adjadj

Description: Double adjoint. Theorem 3.11(iv) of Beran p. 106. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjadj T dom adj h adj h adj h T = T

Proof

Step Hyp Ref Expression
1 adj2 T dom adj h x y T x ih y = x ih adj h T y
2 dmadjrn T dom adj h adj h T dom adj h
3 adj1 adj h T dom adj h x y x ih adj h T y = adj h adj h T x ih y
4 2 3 syl3an1 T dom adj h x y x ih adj h T y = adj h adj h T x ih y
5 1 4 eqtr2d T dom adj h x y adj h adj h T x ih y = T x ih y
6 5 3expib T dom adj h x y adj h adj h T x ih y = T x ih y
7 6 ralrimivv T dom adj h x y adj h adj h T x ih y = T x ih y
8 dmadjrn adj h T dom adj h adj h adj h T dom adj h
9 dmadjop adj h adj h T dom adj h adj h adj h T :
10 2 8 9 3syl T dom adj h adj h adj h T :
11 dmadjop T dom adj h T :
12 hoeq1 adj h adj h T : T : x y adj h adj h T x ih y = T x ih y adj h adj h T = T
13 10 11 12 syl2anc T dom adj h x y adj h adj h T x ih y = T x ih y adj h adj h T = T
14 7 13 mpbid T dom adj h adj h adj h T = T