Metamath Proof Explorer


Theorem adjbd1o

Description: The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjbd1o adj h BndLinOp : BndLinOp 1-1 onto BndLinOp

Proof

Step Hyp Ref Expression
1 adj1o adj h : dom adj h 1-1 onto dom adj h
2 f1of1 adj h : dom adj h 1-1 onto dom adj h adj h : dom adj h 1-1 dom adj h
3 1 2 ax-mp adj h : dom adj h 1-1 dom adj h
4 bdopssadj BndLinOp dom adj h
5 f1ores adj h : dom adj h 1-1 dom adj h BndLinOp dom adj h adj h BndLinOp : BndLinOp 1-1 onto adj h BndLinOp
6 3 4 5 mp2an adj h BndLinOp : BndLinOp 1-1 onto adj h BndLinOp
7 vex y V
8 7 elima y adj h BndLinOp x BndLinOp x adj h y
9 f1ofn adj h : dom adj h 1-1 onto dom adj h adj h Fn dom adj h
10 1 9 ax-mp adj h Fn dom adj h
11 bdopadj x BndLinOp x dom adj h
12 fnbrfvb adj h Fn dom adj h x dom adj h adj h x = y x adj h y
13 10 11 12 sylancr x BndLinOp adj h x = y x adj h y
14 13 rexbiia x BndLinOp adj h x = y x BndLinOp x adj h y
15 adjbdlnb x BndLinOp adj h x BndLinOp
16 eleq1 adj h x = y adj h x BndLinOp y BndLinOp
17 15 16 syl5bb adj h x = y x BndLinOp y BndLinOp
18 17 biimpcd x BndLinOp adj h x = y y BndLinOp
19 18 rexlimiv x BndLinOp adj h x = y y BndLinOp
20 adjbdln y BndLinOp adj h y BndLinOp
21 bdopadj y BndLinOp y dom adj h
22 adjadj y dom adj h adj h adj h y = y
23 21 22 syl y BndLinOp adj h adj h y = y
24 fveqeq2 x = adj h y adj h x = y adj h adj h y = y
25 24 rspcev adj h y BndLinOp adj h adj h y = y x BndLinOp adj h x = y
26 20 23 25 syl2anc y BndLinOp x BndLinOp adj h x = y
27 19 26 impbii x BndLinOp adj h x = y y BndLinOp
28 8 14 27 3bitr2i y adj h BndLinOp y BndLinOp
29 28 eqriv adj h BndLinOp = BndLinOp
30 f1oeq3 adj h BndLinOp = BndLinOp adj h BndLinOp : BndLinOp 1-1 onto adj h BndLinOp adj h BndLinOp : BndLinOp 1-1 onto BndLinOp
31 29 30 ax-mp adj h BndLinOp : BndLinOp 1-1 onto adj h BndLinOp adj h BndLinOp : BndLinOp 1-1 onto BndLinOp
32 6 31 mpbi adj h BndLinOp : BndLinOp 1-1 onto BndLinOp