Metamath Proof Explorer


Theorem adjcoi

Description: The adjoint of a composition of bounded linear operators. Theorem 3.11(viii) of Beran p. 106. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 S BndLinOp
nmoptri.2 T BndLinOp
Assertion adjcoi adj h S T = adj h T adj h S

Proof

Step Hyp Ref Expression
1 nmoptri.1 S BndLinOp
2 nmoptri.2 T BndLinOp
3 adjbdln T BndLinOp adj h T BndLinOp
4 bdopf adj h T BndLinOp adj h T :
5 2 3 4 mp2b adj h T :
6 adjbdln S BndLinOp adj h S BndLinOp
7 bdopf adj h S BndLinOp adj h S :
8 1 6 7 mp2b adj h S :
9 5 8 hocoi y adj h T adj h S y = adj h T adj h S y
10 9 oveq2d y x ih adj h T adj h S y = x ih adj h T adj h S y
11 10 adantl x y x ih adj h T adj h S y = x ih adj h T adj h S y
12 bdopf S BndLinOp S :
13 1 12 ax-mp S :
14 bdopf T BndLinOp T :
15 2 14 ax-mp T :
16 13 15 hocoi x S T x = S T x
17 16 oveq1d x S T x ih y = S T x ih y
18 17 adantr x y S T x ih y = S T x ih y
19 15 ffvelrni x T x
20 bdopadj S BndLinOp S dom adj h
21 1 20 ax-mp S dom adj h
22 adj2 S dom adj h T x y S T x ih y = T x ih adj h S y
23 21 22 mp3an1 T x y S T x ih y = T x ih adj h S y
24 19 23 sylan x y S T x ih y = T x ih adj h S y
25 8 ffvelrni y adj h S y
26 bdopadj T BndLinOp T dom adj h
27 2 26 ax-mp T dom adj h
28 adj2 T dom adj h x adj h S y T x ih adj h S y = x ih adj h T adj h S y
29 27 28 mp3an1 x adj h S y T x ih adj h S y = x ih adj h T adj h S y
30 25 29 sylan2 x y T x ih adj h S y = x ih adj h T adj h S y
31 18 24 30 3eqtrd x y S T x ih y = x ih adj h T adj h S y
32 1 2 bdopcoi S T BndLinOp
33 bdopadj S T BndLinOp S T dom adj h
34 32 33 ax-mp S T dom adj h
35 adj2 S T dom adj h x y S T x ih y = x ih adj h S T y
36 34 35 mp3an1 x y S T x ih y = x ih adj h S T y
37 11 31 36 3eqtr2rd x y x ih adj h S T y = x ih adj h T adj h S y
38 37 rgen2 x y x ih adj h S T y = x ih adj h T adj h S y
39 adjbdln S T BndLinOp adj h S T BndLinOp
40 bdopf adj h S T BndLinOp adj h S T :
41 32 39 40 mp2b adj h S T :
42 5 8 hocofi adj h T adj h S :
43 hoeq2 adj h S T : adj h T adj h S : x y x ih adj h S T y = x ih adj h T adj h S y adj h S T = adj h T adj h S
44 41 42 43 mp2an x y x ih adj h S T y = x ih adj h T adj h S y adj h S T = adj h T adj h S
45 38 44 mpbi adj h S T = adj h T adj h S