Metamath Proof Explorer


Theorem adjmo

Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjmo * u u : x y x ih T y = u x ih y

Proof

Step Hyp Ref Expression
1 r19.26-2 x y x ih T y = u x ih y x ih T y = v x ih y x y x ih T y = u x ih y x y x ih T y = v x ih y
2 eqtr2 x ih T y = u x ih y x ih T y = v x ih y u x ih y = v x ih y
3 2 2ralimi x y x ih T y = u x ih y x ih T y = v x ih y x y u x ih y = v x ih y
4 1 3 sylbir x y x ih T y = u x ih y x y x ih T y = v x ih y x y u x ih y = v x ih y
5 hoeq1 u : v : x y u x ih y = v x ih y u = v
6 5 biimpa u : v : x y u x ih y = v x ih y u = v
7 4 6 sylan2 u : v : x y x ih T y = u x ih y x y x ih T y = v x ih y u = v
8 7 an4s u : x y x ih T y = u x ih y v : x y x ih T y = v x ih y u = v
9 8 gen2 u v u : x y x ih T y = u x ih y v : x y x ih T y = v x ih y u = v
10 feq1 u = v u : v :
11 fveq1 u = v u x = v x
12 11 oveq1d u = v u x ih y = v x ih y
13 12 eqeq2d u = v x ih T y = u x ih y x ih T y = v x ih y
14 13 2ralbidv u = v x y x ih T y = u x ih y x y x ih T y = v x ih y
15 10 14 anbi12d u = v u : x y x ih T y = u x ih y v : x y x ih T y = v x ih y
16 15 mo4 * u u : x y x ih T y = u x ih y u v u : x y x ih T y = u x ih y v : x y x ih T y = v x ih y u = v
17 9 16 mpbir * u u : x y x ih T y = u x ih y