Metamath Proof Explorer


Theorem adjsslnop

Description: Every operator with an adjoint is linear. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion adjsslnop dom adj h LinOp

Proof

Step Hyp Ref Expression
1 adjadj t dom adj h adj h adj h t = t
2 dmadjrn t dom adj h adj h t dom adj h
3 adjlnop adj h t dom adj h adj h adj h t LinOp
4 2 3 syl t dom adj h adj h adj h t LinOp
5 1 4 eqeltrrd t dom adj h t LinOp
6 5 ssriv dom adj h LinOp