Metamath Proof Explorer


Theorem adjval

Description: Value of the adjoint function for T in the domain of adjh . (Contributed by NM, 19-Feb-2006) (Revised by Mario Carneiro, 24-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion adjval T dom adj h adj h T = ι u | x y x ih T y = u x ih y

Proof

Step Hyp Ref Expression
1 dmadjop T dom adj h T :
2 1 biantrurd T dom adj h u : x y x ih T y = u x ih y T : u : x y x ih T y = u x ih y
3 ax-hilex V
4 3 3 elmap u u :
5 4 anbi1i u x y x ih T y = u x ih y u : x y x ih T y = u x ih y
6 3anass T : u : x y x ih T y = u x ih y T : u : x y x ih T y = u x ih y
7 2 5 6 3bitr4g T dom adj h u x y x ih T y = u x ih y T : u : x y x ih T y = u x ih y
8 7 iotabidv T dom adj h ι u | u x y x ih T y = u x ih y = ι u | T : u : x y x ih T y = u x ih y
9 df-riota ι u | x y x ih T y = u x ih y = ι u | u x y x ih T y = u x ih y
10 9 a1i T dom adj h ι u | x y x ih T y = u x ih y = ι u | u x y x ih T y = u x ih y
11 dfadj2 adj h = t u | t : u : x y x ih t y = u x ih y
12 feq1 t = T t : T :
13 fveq1 t = T t y = T y
14 13 oveq2d t = T x ih t y = x ih T y
15 14 eqeq1d t = T x ih t y = u x ih y x ih T y = u x ih y
16 15 2ralbidv t = T x y x ih t y = u x ih y x y x ih T y = u x ih y
17 12 16 3anbi13d t = T t : u : x y x ih t y = u x ih y T : u : x y x ih T y = u x ih y
18 11 17 fvopab5 T dom adj h adj h T = ι u | T : u : x y x ih T y = u x ih y
19 8 10 18 3eqtr4rd T dom adj h adj h T = ι u | x y x ih T y = u x ih y