Metamath Proof Explorer


Theorem adjval2

Description: Value of the adjoint function. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjval2 TdomadjhadjhT=ιu|xyTxihy=xihuy

Proof

Step Hyp Ref Expression
1 adjval TdomadjhadjhT=ιu|xyxihTy=uxihy
2 dmadjop TdomadjhT:
3 elmapi uu:
4 adjsym T:u:xyxihTy=uxihyxyxihuy=Txihy
5 eqcom xihuy=TxihyTxihy=xihuy
6 5 2ralbii xyxihuy=TxihyxyTxihy=xihuy
7 4 6 bitrdi T:u:xyxihTy=uxihyxyTxihy=xihuy
8 2 3 7 syl2an TdomadjhuxyxihTy=uxihyxyTxihy=xihuy
9 8 riotabidva Tdomadjhιu|xyxihTy=uxihy=ιu|xyTxihy=xihuy
10 1 9 eqtrd TdomadjhadjhT=ιu|xyTxihy=xihuy