Metamath Proof Explorer


Theorem adjval2

Description: Value of the adjoint function. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjval2 T dom adj h adj h T = ι u | x y T x ih y = x ih u y

Proof

Step Hyp Ref Expression
1 adjval T dom adj h adj h T = ι u | x y x ih T y = u x ih y
2 dmadjop T dom adj h T :
3 elmapi u u :
4 adjsym T : u : x y x ih T y = u x ih y x y x ih u y = T x ih y
5 eqcom x ih u y = T x ih y T x ih y = x ih u y
6 5 2ralbii x y x ih u y = T x ih y x y T x ih y = x ih u y
7 4 6 bitrdi T : u : x y x ih T y = u x ih y x y T x ih y = x ih u y
8 2 3 7 syl2an T dom adj h u x y x ih T y = u x ih y x y T x ih y = x ih u y
9 8 riotabidva T dom adj h ι u | x y x ih T y = u x ih y = ι u | x y T x ih y = x ih u y
10 1 9 eqtrd T dom adj h adj h T = ι u | x y T x ih y = x ih u y