Metamath Proof Explorer


Theorem adjvalval

Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Assertion adjvalval T dom adj h A adj h T A = ι w | x T x ih A = x ih w

Proof

Step Hyp Ref Expression
1 adjcl T dom adj h A adj h T A
2 eqcom T x ih A = x ih w x ih w = T x ih A
3 adj2 T dom adj h x A T x ih A = x ih adj h T A
4 3 3com23 T dom adj h A x T x ih A = x ih adj h T A
5 4 3expa T dom adj h A x T x ih A = x ih adj h T A
6 5 eqeq2d T dom adj h A x x ih w = T x ih A x ih w = x ih adj h T A
7 2 6 syl5bb T dom adj h A x T x ih A = x ih w x ih w = x ih adj h T A
8 7 ralbidva T dom adj h A x T x ih A = x ih w x x ih w = x ih adj h T A
9 8 adantr T dom adj h A w x T x ih A = x ih w x x ih w = x ih adj h T A
10 simpr T dom adj h A w w
11 1 adantr T dom adj h A w adj h T A
12 hial2eq2 w adj h T A x x ih w = x ih adj h T A w = adj h T A
13 10 11 12 syl2anc T dom adj h A w x x ih w = x ih adj h T A w = adj h T A
14 9 13 bitrd T dom adj h A w x T x ih A = x ih w w = adj h T A
15 1 14 riota5 T dom adj h A ι w | x T x ih A = x ih w = adj h T A
16 15 eqcomd T dom adj h A adj h T A = ι w | x T x ih A = x ih w