Metamath Proof Explorer


Theorem adjvalval

Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Assertion adjvalval TdomadjhAadjhTA=ιw|xTxihA=xihw

Proof

Step Hyp Ref Expression
1 adjcl TdomadjhAadjhTA
2 eqcom TxihA=xihwxihw=TxihA
3 adj2 TdomadjhxATxihA=xihadjhTA
4 3 3com23 TdomadjhAxTxihA=xihadjhTA
5 4 3expa TdomadjhAxTxihA=xihadjhTA
6 5 eqeq2d TdomadjhAxxihw=TxihAxihw=xihadjhTA
7 2 6 bitrid TdomadjhAxTxihA=xihwxihw=xihadjhTA
8 7 ralbidva TdomadjhAxTxihA=xihwxxihw=xihadjhTA
9 8 adantr TdomadjhAwxTxihA=xihwxxihw=xihadjhTA
10 simpr TdomadjhAww
11 1 adantr TdomadjhAwadjhTA
12 hial2eq2 wadjhTAxxihw=xihadjhTAw=adjhTA
13 10 11 12 syl2anc TdomadjhAwxxihw=xihadjhTAw=adjhTA
14 9 13 bitrd TdomadjhAwxTxihA=xihww=adjhTA
15 1 14 riota5 TdomadjhAιw|xTxihA=xihw=adjhTA
16 15 eqcomd TdomadjhAadjhTA=ιw|xTxihA=xihw