Metamath Proof Explorer


Theorem advlogexp

Description: The antiderivative of a power of the logarithm. (Set A = 1 and multiply by ( -u 1 ) ^ N x. N ! to get the antiderivative of log ( x ) ^ N itself.) (Contributed by Mario Carneiro, 22-May-2016)

Ref Expression
Assertion advlogexp A + N 0 dx + x k = 0 N log A x k k ! d x = x + log A x N N !

Proof

Step Hyp Ref Expression
1 fzfid A + N 0 x + 0 N Fin
2 rpcn x + x
3 2 adantl A + N 0 x + x
4 rpdivcl A + x + A x +
5 4 adantlr A + N 0 x + A x +
6 5 relogcld A + N 0 x + log A x
7 elfznn0 k 0 N k 0
8 reexpcl log A x k 0 log A x k
9 6 7 8 syl2an A + N 0 x + k 0 N log A x k
10 7 adantl A + N 0 x + k 0 N k 0
11 10 faccld A + N 0 x + k 0 N k !
12 9 11 nndivred A + N 0 x + k 0 N log A x k k !
13 12 recnd A + N 0 x + k 0 N log A x k k !
14 1 3 13 fsummulc2 A + N 0 x + x k = 0 N log A x k k ! = k = 0 N x log A x k k !
15 simplr A + N 0 x + N 0
16 nn0uz 0 = 0
17 15 16 eleqtrdi A + N 0 x + N 0
18 3 adantr A + N 0 x + k 0 N x
19 18 13 mulcld A + N 0 x + k 0 N x log A x k k !
20 oveq2 k = 0 log A x k = log A x 0
21 fveq2 k = 0 k ! = 0 !
22 fac0 0 ! = 1
23 21 22 eqtrdi k = 0 k ! = 1
24 20 23 oveq12d k = 0 log A x k k ! = log A x 0 1
25 24 oveq2d k = 0 x log A x k k ! = x log A x 0 1
26 17 19 25 fsum1p A + N 0 x + k = 0 N x log A x k k ! = x log A x 0 1 + k = 0 + 1 N x log A x k k !
27 6 recnd A + N 0 x + log A x
28 27 exp0d A + N 0 x + log A x 0 = 1
29 28 oveq1d A + N 0 x + log A x 0 1 = 1 1
30 1div1e1 1 1 = 1
31 29 30 eqtrdi A + N 0 x + log A x 0 1 = 1
32 31 oveq2d A + N 0 x + x log A x 0 1 = x 1
33 3 mulid1d A + N 0 x + x 1 = x
34 32 33 eqtrd A + N 0 x + x log A x 0 1 = x
35 1zzd A + N 0 x + 1
36 nn0z N 0 N
37 36 ad2antlr A + N 0 x + N
38 fz1ssfz0 1 N 0 N
39 38 sseli k 1 N k 0 N
40 39 19 sylan2 A + N 0 x + k 1 N x log A x k k !
41 oveq2 k = j + 1 log A x k = log A x j + 1
42 fveq2 k = j + 1 k ! = j + 1 !
43 41 42 oveq12d k = j + 1 log A x k k ! = log A x j + 1 j + 1 !
44 43 oveq2d k = j + 1 x log A x k k ! = x log A x j + 1 j + 1 !
45 35 35 37 40 44 fsumshftm A + N 0 x + k = 1 N x log A x k k ! = j = 1 1 N 1 x log A x j + 1 j + 1 !
46 0p1e1 0 + 1 = 1
47 46 oveq1i 0 + 1 N = 1 N
48 47 sumeq1i k = 0 + 1 N x log A x k k ! = k = 1 N x log A x k k !
49 48 a1i A + N 0 x + k = 0 + 1 N x log A x k k ! = k = 1 N x log A x k k !
50 1m1e0 1 1 = 0
51 50 oveq1i 1 1 ..^ N = 0 ..^ N
52 fzoval N 1 1 ..^ N = 1 1 N 1
53 37 52 syl A + N 0 x + 1 1 ..^ N = 1 1 N 1
54 51 53 eqtr3id A + N 0 x + 0 ..^ N = 1 1 N 1
55 54 sumeq1d A + N 0 x + j 0 ..^ N x log A x j + 1 j + 1 ! = j = 1 1 N 1 x log A x j + 1 j + 1 !
56 45 49 55 3eqtr4d A + N 0 x + k = 0 + 1 N x log A x k k ! = j 0 ..^ N x log A x j + 1 j + 1 !
57 34 56 oveq12d A + N 0 x + x log A x 0 1 + k = 0 + 1 N x log A x k k ! = x + j 0 ..^ N x log A x j + 1 j + 1 !
58 14 26 57 3eqtrd A + N 0 x + x k = 0 N log A x k k ! = x + j 0 ..^ N x log A x j + 1 j + 1 !
59 58 mpteq2dva A + N 0 x + x k = 0 N log A x k k ! = x + x + j 0 ..^ N x log A x j + 1 j + 1 !
60 59 oveq2d A + N 0 dx + x k = 0 N log A x k k ! d x = dx + x + j 0 ..^ N x log A x j + 1 j + 1 ! d x
61 reelprrecn
62 61 a1i A + N 0
63 1cnd A + N 0 x + 1
64 recn x x
65 64 adantl A + N 0 x x
66 1cnd A + N 0 x 1
67 62 dvmptid A + N 0 dx x d x = x 1
68 rpssre +
69 68 a1i A + N 0 +
70 eqid TopOpen fld = TopOpen fld
71 70 tgioo2 topGen ran . = TopOpen fld 𝑡
72 ioorp 0 +∞ = +
73 iooretop 0 +∞ topGen ran .
74 72 73 eqeltrri + topGen ran .
75 74 a1i A + N 0 + topGen ran .
76 62 65 66 67 69 71 70 75 dvmptres A + N 0 dx + x d x = x + 1
77 fzofi 0 ..^ N Fin
78 77 a1i A + N 0 x + 0 ..^ N Fin
79 3 adantr A + N 0 x + j 0 ..^ N x
80 elfzonn0 j 0 ..^ N j 0
81 peano2nn0 j 0 j + 1 0
82 80 81 syl j 0 ..^ N j + 1 0
83 reexpcl log A x j + 1 0 log A x j + 1
84 6 82 83 syl2an A + N 0 x + j 0 ..^ N log A x j + 1
85 82 adantl A + N 0 x + j 0 ..^ N j + 1 0
86 85 faccld A + N 0 x + j 0 ..^ N j + 1 !
87 84 86 nndivred A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 !
88 87 recnd A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 !
89 79 88 mulcld A + N 0 x + j 0 ..^ N x log A x j + 1 j + 1 !
90 78 89 fsumcl A + N 0 x + j 0 ..^ N x log A x j + 1 j + 1 !
91 6 15 reexpcld A + N 0 x + log A x N
92 faccl N 0 N !
93 92 ad2antlr A + N 0 x + N !
94 91 93 nndivred A + N 0 x + log A x N N !
95 94 recnd A + N 0 x + log A x N N !
96 ax-1cn 1
97 subcl log A x N N ! 1 log A x N N ! 1
98 95 96 97 sylancl A + N 0 x + log A x N N ! 1
99 77 a1i A + N 0 0 ..^ N Fin
100 89 an32s A + N 0 j 0 ..^ N x + x log A x j + 1 j + 1 !
101 100 3impa A + N 0 j 0 ..^ N x + x log A x j + 1 j + 1 !
102 reexpcl log A x j 0 log A x j
103 6 80 102 syl2an A + N 0 x + j 0 ..^ N log A x j
104 80 adantl A + N 0 x + j 0 ..^ N j 0
105 104 faccld A + N 0 x + j 0 ..^ N j !
106 103 105 nndivred A + N 0 x + j 0 ..^ N log A x j j !
107 106 recnd A + N 0 x + j 0 ..^ N log A x j j !
108 88 107 subcld A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 ! log A x j j !
109 108 an32s A + N 0 j 0 ..^ N x + log A x j + 1 j + 1 ! log A x j j !
110 109 3impa A + N 0 j 0 ..^ N x + log A x j + 1 j + 1 ! log A x j j !
111 61 a1i A + N 0 j 0 ..^ N
112 2 adantl A + N 0 j 0 ..^ N x + x
113 1cnd A + N 0 j 0 ..^ N x + 1
114 76 adantr A + N 0 j 0 ..^ N dx + x d x = x + 1
115 88 an32s A + N 0 j 0 ..^ N x + log A x j + 1 j + 1 !
116 negex log A x j j ! x V
117 116 a1i A + N 0 j 0 ..^ N x + log A x j j ! x V
118 cnelprrecn
119 118 a1i A + N 0 j 0 ..^ N
120 27 adantlr A + N 0 j 0 ..^ N x + log A x
121 negex 1 x V
122 121 a1i A + N 0 j 0 ..^ N x + 1 x V
123 id y y
124 80 adantl A + N 0 j 0 ..^ N j 0
125 124 81 syl A + N 0 j 0 ..^ N j + 1 0
126 expcl y j + 1 0 y j + 1
127 123 125 126 syl2anr A + N 0 j 0 ..^ N y y j + 1
128 125 faccld A + N 0 j 0 ..^ N j + 1 !
129 128 nncnd A + N 0 j 0 ..^ N j + 1 !
130 129 adantr A + N 0 j 0 ..^ N y j + 1 !
131 128 nnne0d A + N 0 j 0 ..^ N j + 1 ! 0
132 131 adantr A + N 0 j 0 ..^ N y j + 1 ! 0
133 127 130 132 divcld A + N 0 j 0 ..^ N y y j + 1 j + 1 !
134 expcl y j 0 y j
135 123 124 134 syl2anr A + N 0 j 0 ..^ N y y j
136 124 faccld A + N 0 j 0 ..^ N j !
137 136 nncnd A + N 0 j 0 ..^ N j !
138 137 adantr A + N 0 j 0 ..^ N y j !
139 124 adantr A + N 0 j 0 ..^ N y j 0
140 139 faccld A + N 0 j 0 ..^ N y j !
141 140 nnne0d A + N 0 j 0 ..^ N y j ! 0
142 135 138 141 divcld A + N 0 j 0 ..^ N y y j j !
143 simplll A + N 0 j 0 ..^ N x + A +
144 simpr A + N 0 j 0 ..^ N x + x +
145 143 144 relogdivd A + N 0 j 0 ..^ N x + log A x = log A log x
146 145 mpteq2dva A + N 0 j 0 ..^ N x + log A x = x + log A log x
147 146 oveq2d A + N 0 j 0 ..^ N dx + log A x d x = dx + log A log x d x
148 relogcl A + log A
149 148 ad2antrr A + N 0 j 0 ..^ N log A
150 149 recnd A + N 0 j 0 ..^ N log A
151 150 adantr A + N 0 j 0 ..^ N x + log A
152 0cnd A + N 0 j 0 ..^ N x + 0
153 150 adantr A + N 0 j 0 ..^ N x log A
154 0cnd A + N 0 j 0 ..^ N x 0
155 111 150 dvmptc A + N 0 j 0 ..^ N dx log A d x = x 0
156 68 a1i A + N 0 j 0 ..^ N +
157 74 a1i A + N 0 j 0 ..^ N + topGen ran .
158 111 153 154 155 156 71 70 157 dvmptres A + N 0 j 0 ..^ N dx + log A d x = x + 0
159 144 relogcld A + N 0 j 0 ..^ N x + log x
160 159 recnd A + N 0 j 0 ..^ N x + log x
161 144 rpreccld A + N 0 j 0 ..^ N x + 1 x +
162 relogf1o log + : + 1-1 onto
163 f1of log + : + 1-1 onto log + : +
164 162 163 mp1i A + N 0 j 0 ..^ N log + : +
165 164 feqmptd A + N 0 j 0 ..^ N log + = x + log + x
166 fvres x + log + x = log x
167 166 mpteq2ia x + log + x = x + log x
168 165 167 eqtrdi A + N 0 j 0 ..^ N log + = x + log x
169 168 oveq2d A + N 0 j 0 ..^ N D log + = dx + log x d x
170 dvrelog D log + = x + 1 x
171 169 170 eqtr3di A + N 0 j 0 ..^ N dx + log x d x = x + 1 x
172 111 151 152 158 160 161 171 dvmptsub A + N 0 j 0 ..^ N dx + log A log x d x = x + 0 1 x
173 147 172 eqtrd A + N 0 j 0 ..^ N dx + log A x d x = x + 0 1 x
174 df-neg 1 x = 0 1 x
175 174 mpteq2i x + 1 x = x + 0 1 x
176 173 175 eqtr4di A + N 0 j 0 ..^ N dx + log A x d x = x + 1 x
177 ovexd A + N 0 j 0 ..^ N y j + 1 y j + 1 - 1 V
178 nn0p1nn j 0 j + 1
179 124 178 syl A + N 0 j 0 ..^ N j + 1
180 dvexp j + 1 dy y j + 1 d y = y j + 1 y j + 1 - 1
181 179 180 syl A + N 0 j 0 ..^ N dy y j + 1 d y = y j + 1 y j + 1 - 1
182 119 127 177 181 129 131 dvmptdivc A + N 0 j 0 ..^ N dy y j + 1 j + 1 ! d y = y j + 1 y j + 1 - 1 j + 1 !
183 124 nn0cnd A + N 0 j 0 ..^ N j
184 183 adantr A + N 0 j 0 ..^ N y j
185 pncan j 1 j + 1 - 1 = j
186 184 96 185 sylancl A + N 0 j 0 ..^ N y j + 1 - 1 = j
187 186 oveq2d A + N 0 j 0 ..^ N y y j + 1 - 1 = y j
188 187 oveq2d A + N 0 j 0 ..^ N y j + 1 y j + 1 - 1 = j + 1 y j
189 facp1 j 0 j + 1 ! = j ! j + 1
190 139 189 syl A + N 0 j 0 ..^ N y j + 1 ! = j ! j + 1
191 peano2cn j j + 1
192 184 191 syl A + N 0 j 0 ..^ N y j + 1
193 138 192 mulcomd A + N 0 j 0 ..^ N y j ! j + 1 = j + 1 j !
194 190 193 eqtrd A + N 0 j 0 ..^ N y j + 1 ! = j + 1 j !
195 188 194 oveq12d A + N 0 j 0 ..^ N y j + 1 y j + 1 - 1 j + 1 ! = j + 1 y j j + 1 j !
196 179 nnne0d A + N 0 j 0 ..^ N j + 1 0
197 196 adantr A + N 0 j 0 ..^ N y j + 1 0
198 135 138 192 141 197 divcan5d A + N 0 j 0 ..^ N y j + 1 y j j + 1 j ! = y j j !
199 195 198 eqtrd A + N 0 j 0 ..^ N y j + 1 y j + 1 - 1 j + 1 ! = y j j !
200 199 mpteq2dva A + N 0 j 0 ..^ N y j + 1 y j + 1 - 1 j + 1 ! = y y j j !
201 182 200 eqtrd A + N 0 j 0 ..^ N dy y j + 1 j + 1 ! d y = y y j j !
202 oveq1 y = log A x y j + 1 = log A x j + 1
203 202 oveq1d y = log A x y j + 1 j + 1 ! = log A x j + 1 j + 1 !
204 oveq1 y = log A x y j = log A x j
205 204 oveq1d y = log A x y j j ! = log A x j j !
206 111 119 120 122 133 142 176 201 203 205 dvmptco A + N 0 j 0 ..^ N dx + log A x j + 1 j + 1 ! d x = x + log A x j j ! 1 x
207 107 an32s A + N 0 j 0 ..^ N x + log A x j j !
208 161 rpcnd A + N 0 j 0 ..^ N x + 1 x
209 207 208 mulneg2d A + N 0 j 0 ..^ N x + log A x j j ! 1 x = log A x j j ! 1 x
210 rpne0 x + x 0
211 210 adantl A + N 0 j 0 ..^ N x + x 0
212 207 112 211 divrecd A + N 0 j 0 ..^ N x + log A x j j ! x = log A x j j ! 1 x
213 212 negeqd A + N 0 j 0 ..^ N x + log A x j j ! x = log A x j j ! 1 x
214 209 213 eqtr4d A + N 0 j 0 ..^ N x + log A x j j ! 1 x = log A x j j ! x
215 214 mpteq2dva A + N 0 j 0 ..^ N x + log A x j j ! 1 x = x + log A x j j ! x
216 206 215 eqtrd A + N 0 j 0 ..^ N dx + log A x j + 1 j + 1 ! d x = x + log A x j j ! x
217 111 112 113 114 115 117 216 dvmptmul A + N 0 j 0 ..^ N dx + x log A x j + 1 j + 1 ! d x = x + 1 log A x j + 1 j + 1 ! + log A x j j ! x x
218 88 mulid2d A + N 0 x + j 0 ..^ N 1 log A x j + 1 j + 1 ! = log A x j + 1 j + 1 !
219 simplr A + N 0 x + j 0 ..^ N x +
220 106 219 rerpdivcld A + N 0 x + j 0 ..^ N log A x j j ! x
221 220 recnd A + N 0 x + j 0 ..^ N log A x j j ! x
222 221 79 mulneg1d A + N 0 x + j 0 ..^ N log A x j j ! x x = log A x j j ! x x
223 211 an32s A + N 0 x + j 0 ..^ N x 0
224 107 79 223 divcan1d A + N 0 x + j 0 ..^ N log A x j j ! x x = log A x j j !
225 224 negeqd A + N 0 x + j 0 ..^ N log A x j j ! x x = log A x j j !
226 222 225 eqtrd A + N 0 x + j 0 ..^ N log A x j j ! x x = log A x j j !
227 218 226 oveq12d A + N 0 x + j 0 ..^ N 1 log A x j + 1 j + 1 ! + log A x j j ! x x = log A x j + 1 j + 1 ! + log A x j j !
228 88 107 negsubd A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 ! + log A x j j ! = log A x j + 1 j + 1 ! log A x j j !
229 227 228 eqtrd A + N 0 x + j 0 ..^ N 1 log A x j + 1 j + 1 ! + log A x j j ! x x = log A x j + 1 j + 1 ! log A x j j !
230 229 an32s A + N 0 j 0 ..^ N x + 1 log A x j + 1 j + 1 ! + log A x j j ! x x = log A x j + 1 j + 1 ! log A x j j !
231 230 mpteq2dva A + N 0 j 0 ..^ N x + 1 log A x j + 1 j + 1 ! + log A x j j ! x x = x + log A x j + 1 j + 1 ! log A x j j !
232 217 231 eqtrd A + N 0 j 0 ..^ N dx + x log A x j + 1 j + 1 ! d x = x + log A x j + 1 j + 1 ! log A x j j !
233 71 70 62 75 99 101 110 232 dvmptfsum A + N 0 dx + j 0 ..^ N x log A x j + 1 j + 1 ! d x = x + j 0 ..^ N log A x j + 1 j + 1 ! log A x j j !
234 oveq2 k = j log A x k = log A x j
235 fveq2 k = j k ! = j !
236 234 235 oveq12d k = j log A x k k ! = log A x j j !
237 oveq2 k = N log A x k = log A x N
238 fveq2 k = N k ! = N !
239 237 238 oveq12d k = N log A x k k ! = log A x N N !
240 236 43 24 239 17 13 telfsumo2 A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 ! log A x j j ! = log A x N N ! log A x 0 1
241 31 oveq2d A + N 0 x + log A x N N ! log A x 0 1 = log A x N N ! 1
242 240 241 eqtrd A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 ! log A x j j ! = log A x N N ! 1
243 242 mpteq2dva A + N 0 x + j 0 ..^ N log A x j + 1 j + 1 ! log A x j j ! = x + log A x N N ! 1
244 233 243 eqtrd A + N 0 dx + j 0 ..^ N x log A x j + 1 j + 1 ! d x = x + log A x N N ! 1
245 62 3 63 76 90 98 244 dvmptadd A + N 0 dx + x + j 0 ..^ N x log A x j + 1 j + 1 ! d x = x + 1 + log A x N N ! - 1
246 pncan3 1 log A x N N ! 1 + log A x N N ! - 1 = log A x N N !
247 96 95 246 sylancr A + N 0 x + 1 + log A x N N ! - 1 = log A x N N !
248 247 mpteq2dva A + N 0 x + 1 + log A x N N ! - 1 = x + log A x N N !
249 60 245 248 3eqtrd A + N 0 dx + x k = 0 N log A x k k ! d x = x + log A x N N !