Metamath Proof Explorer


Theorem aev-o

Description: A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-c16 . Version of aev using ax-c11 . (Contributed by NM, 8-Nov-2006) (Proof shortened by Andrew Salmon, 21-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion aev-o x x = y z w = v

Proof

Step Hyp Ref Expression
1 hbae-o x x = y z x x = y
2 hbae-o x x = y t x x = y
3 ax7 x = t x = y t = y
4 3 spimvw x x = y t = y
5 2 4 alrimih x x = y t t = y
6 ax7 y = u y = t u = t
7 equcomi u = t t = u
8 6 7 syl6 y = u y = t t = u
9 8 spimvw y y = t t = u
10 9 aecoms-o t t = y t = u
11 10 axc4i-o t t = y t t = u
12 hbae-o t t = u v t t = u
13 ax7 t = v t = u v = u
14 13 spimvw t t = u v = u
15 12 14 alrimih t t = u v v = u
16 aecom-o v v = u u u = v
17 11 15 16 3syl t t = y u u = v
18 ax7 u = w u = v w = v
19 18 spimvw u u = v w = v
20 5 17 19 3syl x x = y w = v
21 1 20 alrimih x x = y z w = v