| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affinecomb1.a |
|
| 2 |
|
affinecomb1.b |
|
| 3 |
|
affinecomb1.c |
|
| 4 |
|
affinecomb1.d |
|
| 5 |
|
affinecomb1.e |
|
| 6 |
|
affinecomb1.f |
|
| 7 |
|
affinecomb1.g |
|
| 8 |
|
affinecomb1.s |
|
| 9 |
1
|
adantr |
|
| 10 |
9
|
recnd |
|
| 11 |
2
|
adantr |
|
| 12 |
11
|
recnd |
|
| 13 |
3
|
adantr |
|
| 14 |
13
|
recnd |
|
| 15 |
|
simpr |
|
| 16 |
15
|
recnd |
|
| 17 |
4
|
adantr |
|
| 18 |
10 12 14 16 17
|
affineequivne |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
oveq1d |
|
| 21 |
|
oveq1 |
|
| 22 |
20 21
|
oveq12d |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
23
|
adantl |
|
| 25 |
|
eqidd |
|
| 26 |
1 2
|
resubcld |
|
| 27 |
3 2
|
resubcld |
|
| 28 |
3
|
recnd |
|
| 29 |
2
|
recnd |
|
| 30 |
4
|
necomd |
|
| 31 |
28 29 30
|
subne0d |
|
| 32 |
26 27 31
|
redivcld |
|
| 33 |
7 6
|
resubcld |
|
| 34 |
32 33
|
remulcld |
|
| 35 |
34 6
|
readdcld |
|
| 36 |
35
|
recnd |
|
| 37 |
6
|
recnd |
|
| 38 |
7
|
recnd |
|
| 39 |
32
|
recnd |
|
| 40 |
36 37 38 39
|
affineequiv4 |
|
| 41 |
25 40
|
mpbird |
|
| 42 |
26
|
recnd |
|
| 43 |
27
|
recnd |
|
| 44 |
33
|
recnd |
|
| 45 |
42 43 44 31
|
div13d |
|
| 46 |
8
|
oveq1i |
|
| 47 |
45 46
|
eqtr4di |
|
| 48 |
47
|
oveq1d |
|
| 49 |
41 48
|
eqtr3d |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
eqeq2d |
|
| 52 |
51
|
biimpd |
|
| 53 |
52
|
adantr |
|
| 54 |
24 53
|
sylbid |
|
| 55 |
54
|
ex |
|
| 56 |
18 55
|
sylbid |
|
| 57 |
56
|
impd |
|
| 58 |
57
|
rexlimdva |
|
| 59 |
5
|
adantr |
|
| 60 |
59
|
recnd |
|
| 61 |
37
|
adantr |
|
| 62 |
38
|
adantr |
|
| 63 |
32
|
adantr |
|
| 64 |
|
eleq1 |
|
| 65 |
64
|
adantl |
|
| 66 |
63 65
|
mpbird |
|
| 67 |
66
|
recnd |
|
| 68 |
60 61 62 67
|
affineequiv4 |
|
| 69 |
19
|
oveq1d |
|
| 70 |
|
oveq1 |
|
| 71 |
69 70
|
oveq12d |
|
| 72 |
|
eqidd |
|
| 73 |
1
|
recnd |
|
| 74 |
73 29 28 39 4
|
affineequivne |
|
| 75 |
72 74
|
mpbird |
|
| 76 |
75
|
eqcomd |
|
| 77 |
71 76
|
sylan9eqr |
|
| 78 |
77
|
eqcomd |
|
| 79 |
78
|
biantrurd |
|
| 80 |
45
|
adantr |
|
| 81 |
|
oveq1 |
|
| 82 |
81
|
adantl |
|
| 83 |
46
|
a1i |
|
| 84 |
80 82 83
|
3eqtr4d |
|
| 85 |
84
|
oveq1d |
|
| 86 |
85
|
eqeq2d |
|
| 87 |
68 79 86
|
3bitr3d |
|
| 88 |
32 87
|
rspcedv |
|
| 89 |
58 88
|
impbid |
|