Description: Equivalence between two ways of expressing B as an affine combination of A and C . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | affineequiv.a | |
|
affineequiv.b | |
||
affineequiv.c | |
||
affineequiv.d | |
||
Assertion | affineequiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | affineequiv.a | |
|
2 | affineequiv.b | |
|
3 | affineequiv.c | |
|
4 | affineequiv.d | |
|
5 | 4 3 | mulcld | |
6 | 4 1 | mulcld | |
7 | 3 5 6 | subsubd | |
8 | 3 5 | subcld | |
9 | 8 6 | addcomd | |
10 | 7 9 | eqtr2d | |
11 | 1cnd | |
|
12 | 11 4 3 | subdird | |
13 | 3 | mullidd | |
14 | 13 | oveq1d | |
15 | 12 14 | eqtrd | |
16 | 15 | oveq2d | |
17 | 3 2 | subcld | |
18 | 3 1 | subcld | |
19 | 4 18 | mulcld | |
20 | 2 17 19 | addsubassd | |
21 | 2 3 | pncan3d | |
22 | 4 3 1 | subdid | |
23 | 21 22 | oveq12d | |
24 | 20 23 | eqtr3d | |
25 | 10 16 24 | 3eqtr4d | |
26 | 25 | eqeq2d | |
27 | 2 | addridd | |
28 | 27 | eqeq1d | |
29 | 0cnd | |
|
30 | 17 19 | subcld | |
31 | 2 29 30 | addcand | |
32 | 26 28 31 | 3bitr2d | |
33 | eqcom | |
|
34 | 32 33 | bitrdi | |
35 | 17 19 | subeq0ad | |
36 | 34 35 | bitrd | |