Step |
Hyp |
Ref |
Expression |
1 |
|
affineequiv.a |
|
2 |
|
affineequiv.b |
|
3 |
|
affineequiv.c |
|
4 |
|
affineequiv.d |
|
5 |
4 3
|
mulcld |
|
6 |
4 1
|
mulcld |
|
7 |
3 5 6
|
subsubd |
|
8 |
3 5
|
subcld |
|
9 |
8 6
|
addcomd |
|
10 |
7 9
|
eqtr2d |
|
11 |
|
1cnd |
|
12 |
11 4 3
|
subdird |
|
13 |
3
|
mulid2d |
|
14 |
13
|
oveq1d |
|
15 |
12 14
|
eqtrd |
|
16 |
15
|
oveq2d |
|
17 |
3 2
|
subcld |
|
18 |
3 1
|
subcld |
|
19 |
4 18
|
mulcld |
|
20 |
2 17 19
|
addsubassd |
|
21 |
2 3
|
pncan3d |
|
22 |
4 3 1
|
subdid |
|
23 |
21 22
|
oveq12d |
|
24 |
20 23
|
eqtr3d |
|
25 |
10 16 24
|
3eqtr4d |
|
26 |
25
|
eqeq2d |
|
27 |
2
|
addid1d |
|
28 |
27
|
eqeq1d |
|
29 |
|
0cnd |
|
30 |
17 19
|
subcld |
|
31 |
2 29 30
|
addcand |
|
32 |
26 28 31
|
3bitr2d |
|
33 |
|
eqcom |
|
34 |
32 33
|
bitrdi |
|
35 |
17 19
|
subeq0ad |
|
36 |
34 35
|
bitrd |
|