Metamath Proof Explorer


Theorem aibnbna

Description: Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016)

Ref Expression
Hypotheses aibnbna.1 φ ψ
aibnbna.2 ¬ ψ
Assertion aibnbna ¬ φ

Proof

Step Hyp Ref Expression
1 aibnbna.1 φ ψ
2 aibnbna.2 ¬ ψ
3 2 1 mto ¬ φ