Metamath Proof Explorer


Theorem aiffbbtat

Description: Given a is equivalent to b, b is equivalent to T. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses aiffbbtat.1 φ ψ
aiffbbtat.2 ψ
Assertion aiffbbtat φ

Proof

Step Hyp Ref Expression
1 aiffbbtat.1 φ ψ
2 aiffbbtat.2 ψ
3 1 2 bitri φ