Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
aiffnbandciffatnotciffb
Metamath Proof Explorer
Description: Given a is equivalent to (not b), c is equivalent to a, there exists a
proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
aiffnbandciffatnotciffb.1
⊢ φ ↔ ¬ ψ
aiffnbandciffatnotciffb.2
⊢ χ ↔ φ
Assertion
aiffnbandciffatnotciffb
⊢ ¬ χ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
aiffnbandciffatnotciffb.1
⊢ φ ↔ ¬ ψ
2
aiffnbandciffatnotciffb.2
⊢ χ ↔ φ
3
2 1
bitri
⊢ χ ↔ ¬ ψ
4
xor3
⊢ ¬ χ ↔ ψ ↔ χ ↔ ¬ ψ
5
3 4
mpbir
⊢ ¬ χ ↔ ψ