Metamath Proof Explorer


Theorem aiffnbandciffatnotciffb

Description: Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses aiffnbandciffatnotciffb.1 φ ¬ ψ
aiffnbandciffatnotciffb.2 χ φ
Assertion aiffnbandciffatnotciffb ¬ χ ψ

Proof

Step Hyp Ref Expression
1 aiffnbandciffatnotciffb.1 φ ¬ ψ
2 aiffnbandciffatnotciffb.2 χ φ
3 2 1 bitri χ ¬ ψ
4 xor3 ¬ χ ψ χ ¬ ψ
5 3 4 mpbir ¬ χ ψ