Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
aifftbifffaibif
Metamath Proof Explorer
Description: Given a is equivalent to T., Given b is equivalent to F., there exists a
proof for that a implies b is false. (Contributed by Jarvin Udandy , 7-Sep-2020)
Ref
Expression
Hypotheses
aifftbifffaibif.1
⊢ φ ↔ ⊤
aifftbifffaibif.2
⊢ ψ ↔ ⊥
Assertion
aifftbifffaibif
⊢ φ → ψ ↔ ⊥
Proof
Step
Hyp
Ref
Expression
1
aifftbifffaibif.1
⊢ φ ↔ ⊤
2
aifftbifffaibif.2
⊢ ψ ↔ ⊥
3
1
aistia
⊢ φ
4
2
aisfina
⊢ ¬ ψ
5
3 4
pm3.2i
⊢ φ ∧ ¬ ψ
6
annim
⊢ φ ∧ ¬ ψ ↔ ¬ φ → ψ
7
6
biimpi
⊢ φ ∧ ¬ ψ → ¬ φ → ψ
8
5 7
ax-mp
⊢ ¬ φ → ψ
9
8
bifal
⊢ φ → ψ ↔ ⊥