Metamath Proof Explorer


Theorem aifftbifffaibif

Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses aifftbifffaibif.1 φ
aifftbifffaibif.2 ψ
Assertion aifftbifffaibif φ ψ

Proof

Step Hyp Ref Expression
1 aifftbifffaibif.1 φ
2 aifftbifffaibif.2 ψ
3 1 aistia φ
4 2 aisfina ¬ ψ
5 3 4 pm3.2i φ ¬ ψ
6 annim φ ¬ ψ ¬ φ ψ
7 6 biimpi φ ¬ ψ ¬ φ ψ
8 5 7 ax-mp ¬ φ ψ
9 8 bifal φ ψ