Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
aifftbifffaibifff
Metamath Proof Explorer
Description: Given a is equivalent to T., Given b is equivalent to F., there exists a
proof for that a iff b is false. (Contributed by Jarvin Udandy , 7-Sep-2020)
Ref
Expression
Hypotheses
aifftbifffaibifff.1
⊢ φ ↔ ⊤
aifftbifffaibifff.2
⊢ ψ ↔ ⊥
Assertion
aifftbifffaibifff
⊢ φ ↔ ψ ↔ ⊥
Proof
Step
Hyp
Ref
Expression
1
aifftbifffaibifff.1
⊢ φ ↔ ⊤
2
aifftbifffaibifff.2
⊢ ψ ↔ ⊥
3
1
aistia
⊢ φ
4
2
aisfina
⊢ ¬ ψ
5
3 4
abnotbtaxb
⊢ φ ⊻ ψ
6
5
axorbtnotaiffb
⊢ ¬ φ ↔ ψ
7
nbfal
⊢ ¬ φ ↔ ψ ↔ φ ↔ ψ ↔ ⊥
8
7
biimpi
⊢ ¬ φ ↔ ψ → φ ↔ ψ ↔ ⊥
9
6 8
ax-mp
⊢ φ ↔ ψ ↔ ⊥