Metamath Proof Explorer


Theorem aifftbifffaibifff

Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses aifftbifffaibifff.1 φ
aifftbifffaibifff.2 ψ
Assertion aifftbifffaibifff φ ψ

Proof

Step Hyp Ref Expression
1 aifftbifffaibifff.1 φ
2 aifftbifffaibifff.2 ψ
3 1 aistia φ
4 2 aisfina ¬ ψ
5 3 4 abnotbtaxb φ ψ
6 5 axorbtnotaiffb ¬ φ ψ
7 nbfal ¬ φ ψ φ ψ
8 7 biimpi ¬ φ ψ φ ψ
9 6 8 ax-mp φ ψ