Metamath Proof Explorer


Theorem aisbbisfaisf

Description: Given a is equivalent to b, b is equivalent to F. there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016)

Ref Expression
Hypotheses aisbbisfaisf.1 φ ψ
aisbbisfaisf.2 ψ
Assertion aisbbisfaisf φ

Proof

Step Hyp Ref Expression
1 aisbbisfaisf.1 φ ψ
2 aisbbisfaisf.2 ψ
3 1 2 bitri φ