Metamath Proof Explorer


Theorem aisfbistiaxb

Description: Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses aisfbistiaxb.1 φ
aisfbistiaxb.2 ψ
Assertion aisfbistiaxb φ ψ

Proof

Step Hyp Ref Expression
1 aisfbistiaxb.1 φ
2 aisfbistiaxb.2 ψ
3 1 aisfina ¬ φ
4 2 aistia ψ
5 3 4 abnotataxb φ ψ