Metamath Proof Explorer


Theorem aistbisfiaxb

Description: Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses aistbisfiaxb.1 φ
aistbisfiaxb.2 ψ
Assertion aistbisfiaxb φ ψ

Proof

Step Hyp Ref Expression
1 aistbisfiaxb.1 φ
2 aistbisfiaxb.2 ψ
3 1 aistia φ
4 2 aisfina ¬ ψ
5 3 4 abnotbtaxb φ ψ